Working with CityGML and ArcGIS
Thorsten Reitz, Esri R&D Center Zurich AG
Christian Dahmen, con terra GmbH
Agenda

1. Introduction to ArcGIS for 3D Cities
2. Concepts of CityGML
3. CityGML I/O Tools
4. 3D Data Quality Assurance
3D Across the Platform

Desktop Web Device

ArcGIS

Web GIS

Portal

Server

Online Content and Services
Applications of 3D
The 3D Cities Information Model
Thorsten Reitz
Why ArcGIS for 3D Cities?
Driving the platform’s 3D capabilities

GIS Professionals
Urban Planners
Citizens, Decision Makers
Businesses

- Manage & Maintain
- Evaluate & Improve
- Understand & Share
- Decide & Market
What is ArcGIS for 3D Cities?
Ready-to-use Workflows, Tools and Sample Data for Urban Management

- Create 3D City Base Layers
- Build a 3D Campus Map
- Visualize New Developments
- Understand Zoning
- Perform Solar Analysis
- Manage Public Safety

3D Cities Information Model: Themes

Built Environment
- Created and actively managed by people
 - Structures, utilities, transportation networks, installations

Legal Environment
- Defines restrictions on land use
 - Land use zones, property ownership boundaries, regulations

Natural Environment
- Naturally occurring features on, above, or below the earth’s surface
 - Land cover, subsurface geology, atmosphere/climate/weather
CityGML – A 3D City Exchange Format

Thorsten Reitz
Data model and exchange format for virtual 3D City Models

Modeling of all relevant parts of a virtual city according to
- Semantics
- Geometry (and Topology)
- Appearance

Various thematic modules
- Buildings, CityFurniture, Relief, Transportation, Vegetation, WaterBody, …

Level of Details (LoD)

Application Domain Extension

CityGML 1.0.0 is OGC Standard since 2008
- Current version is 2.0.0
Comparing CityGML and the 3DCIM

3DCIM
- Procedural Creation
- Scalable Visuals
- Analytics
- Data Maintenance
- Interoperability

CityGML
- Open Infrastructure
- Exchange Format
- Common Semantics
- ADEs
CityGML I/O Tools

Christian Dahmen
CityGML and ArcGIS for 3D Cities

- 3D City Information Model (3DCIM)
 - Data Model for Geodatabases with Data Management Tools
- CityGML Import and Export Tools
 - Import CityGML files into Geodatabase
 - Export from Geodatabase to CityGML files
CityGML Import and Export Principles

- **ETL Tools**
 - Ready to use
 - Customizable
- **Lossless import and export (round trips)**
- **CityGML version 1.0 and 2.0**
 - All Level of Details (0-4)
 - Multiple representations
 - Textures
- **System requirements**
 - ArcGIS 10.2.2
 - Data Interoperability Extension or FME® Desktop 2014
Supported CityGML Feature Classes

- **Building, BuildingPart**
 - Roof-, Wall-, GroundSurface
 - Room
 - BuildingFurniture
 - IntBuildingInstallation
 - BuildingInstallation
 - Opening, Window, Door
 - FloorSurface
 - InteriorWallSurface

- **PlantCover**

- **SolitaryVegetationObject**

- **CityFurniture**

- **TrafficArea**

- **Address**

- **LandUse**

- **WaterBody & Surface**

3D Cities Information Model in File GDB

Note: ADEs are in scope for the next release.
Example Mapping for Building

Building

LoD1

<<includes>>

GroundSurface

LoD2

<<includes>>

WallSurface

RoofSurface, ...

<<includes>>

Ext.Installation, ..

LoD3

<<includes>>

InteriorWall

InteriorInst.

LoD4

<<includes>>

Room, ...

Solid

BuildingShell

Level: 1..4

<<aggregated to>>

BuildingShellPart

BuildingInteriorStruct.

BuildingInst.

BuildingInteriorSpace
3D Data Quality Assurance

Christian Dahmen
3D Data Quality Assurance

- Data Quality is Key for
 - Interoperability
 - Analysis
 - Visualization

- Quality Measurements
 - Geometry (precision, accuracy, closeness…)
 - Semantics (meaning, content, …)
 - …
Common 3D Data Issues

- Orientation
- Closed Volume
- Missing Textures
Specific CityGML Quality Issues

- Schema
- Semantics
 - Misinterpretation of Concepts (e.g. Level of Details)
 - Different Attribute Storage Patterns (e.g. Generic Attributes and Features)
- Geometry
 - GML geometry characteristics
- Conformance Requirements

© http://wiki.quality.sig3d.org/
10.3.9 Conformance requirements
- Base requirements
 1. If a building only consists of one (homogeneous) part, it shall be represented by the element Building. However, if a building is composed of individual structural segments, it shall be modelled as a Building element having one or more additional BuildingPart elements. Only the geometry and non-spatial properties of the main part of the building should be represented within the aggregating Building element.
OGC Data Quality Interoperability Experiment (09/2014 – 03/2015)

OpenGIS Project Document 14-043

• OGC, SIG3D and EuroSDR
 - Define data quality requirements for CityGML data specification
 - Provide recommended implementation guidance for 3D data
 - Provide a suite of essential quality checking tools

• Types of Issues
 - Schema Errors
 - Geometric Errors (part of this presentation)
 - Semantic Errors
 - Conformance Requirements

• Final Report is outstanding
CityGML I/O Tools (upcoming Release enhancements)

- Additional ETL Tools
 - Issue Detection and Reporting
 - (Repairing)
- Purpose
 - Check CityGML files before importing data into 3DCIM
Set of Issues to Detect

- Schema Validation
- Self-Intersections in 2D
- Non-Planar Surfaces
- Invalid Solid Boundaries
- Invalid Solid Voids
- Missing Texture Coordinates
- Missing Vertex Normals
Live Demonstration
Validation Tools for CityGML
Get the 3D Cities & CityGML tools!

• GitHub:
 - https://github.com/Esri/3d-cities-template

• Learn more about 3D Cities:

• Type less:
 - http://esriurl.com/3DCities
Thank you…
Any Questions? Ideas? Comments?

Please fill out the session survey.
Understanding our world.