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Assumptions

Please turn off cell phones

• Basic knowledge of SQL and relational databases

• Basic knowledge of the Geodatabase 

• We’ll hold all questions till end



Roadmap

• Using databases in ArcGIS

• Building on databases with the geodatabase

• Accessing the schema of a geodatabase through SQL

• Editing a geodatabase through SQL



Databases

• You might have spatial or nonspatial data in a database that you want to use in 

ArcGIS

- Oracle, SQL Server, DB2, Informix, PostGreSQL, Netezza

• You can connect directly to a supported database and view the data in the 

tables by making a connection from the Catalog tree in ArcGIS for Desktop

• To filter what data appears in ArcMap, you can use a query layer

• Use SQL to access the data within the database



What can you access in a Database?

• Rows and Tables

- Containing zero to many rows

- One to many columns

- All rows in the table have the same schema

• Can perform table management tasks

- View and modify schema

- Add and remove rows

- Perform queries



What can you access in a Database? …

• A table with a column that stores a spatial type

- We call this a feature class

• Each row represents a feature

• The fields in each row represent various characteristics or properties of the 

feature

• One of the fields holds the feature geometry which is stored as a spatial type



Viewing database data in ArcGIS

• Tables (with and without a spatial type) are viewed in ArcGIS through 

a query layer

- Define the layer yourself or let ArcGIS discover how to define it

• Query Layer is a layer that is defined by a SQL query

- Provide data integration with geodatabases as well as from databases

- Can quickly integrate spatial and nonspatial information into GIS projects 

independently of where and how that information is stored



Viewing database data in ArcGIS

• Simple SQL query

SELECT * FROM dbo.HurricaneTracks_2005 hurricane



Viewing database data in ArcGIS

• Most complex SQL query that uses casting, derived columns and spatial 

operators

SELECT county.id, county.State_name, county.NAME county_name, 

county.POP1990 population, CAST(county.POP1990 as 

decimal)/CAST(states.POP1990 as decimal)*100 PctStatePop, 

county.Shape FROM dbo.HurricaneTracks_2005 hurricane, dbo.counties

county, dbo.states states WHERE hurricane.NAME = 'KATRINA' AND 

hurricane.Shape.STIntersects(county.shape) = 1
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Other Database Tasks

• Connecting to a database 

• Supported data types

• Viewing data and query layers

• Administer the database (e.g. grant access)

• Create new tables and alter schema



Building on top of Database Functionality
Cases where you want to do more with your data

• Store business rules with the data so they’re available to everyone who 

accesses the data

• Advanced data modeling such as with transportation or utility networks

• Store and work with detailed cartography

• Multiple editors working on the same data at the same time without impacting 

each other



What is the Geodatabase?

• A physical store of geographic data

- Scalable storage model supported on different platforms

• Core ArcGIS information model

- A comprehensive model for representing and managing GIS data

- Implemented as a series of simple tables

• A transactional model for managing GIS workflows

• Set of components for accessing data



Geodatabase is based on relational principles

• The geodatabase is built on an extended relational 

database

• Leverages key DBMS principles and concepts to store 

geographic data as tables in a DBMS

• The core of the geodatabase is a standard relational 

database schema

- a series of standard database tables, column types, indexes, 

and other database objects



Geodatabase Schema

• There are two sets of tables:

- Dataset tables (user-defined tables)

- Geodatabase system tables

XML

SQL Type

System tables

User data



User-defined tables

• Stores the content of each dataset in the geodatabase

• Datasets are stored in 1 or more tables

• Spatial Types enhance the capabilities of the geodatabase

- SQL access to geometry

- Industry standard storage model and API

XML

SQL Type

System tables

User data



Geodatabase system tables

• System tables store definitions, rules, and behavior for datasets

• Tracks contents within a geodatabase

• 4 main system tables

• Geodatabase schema is stored primarily within an XML field

XML

SQL Type

System tables

User data
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Accessing Geodatabase through SQL

• Access schema and properties of existing datasets

- Use SQL statements to query the definition attribute on the gdb_items table

• Editing tables/feature classes, whether versioned or not

- Via versioned views with versioned classes

• Create tables with SQL containing spatial or raster types

• Leverage SQL functions to evaluate attributes and spatial relationships, 

perform spatial operations, and return and set spatial properties



• With SQL, you access the data at the DBMS 

level

- Bypass behaviors and functionality enforced by 

the geodatabase or ArcGIS clients

• Need to be aware of what you can and 

cannot edit

- Relationship classes 

- Geometric networks 

- Topology…

DBMS

Geodatabase

ArcGIS

Python

SQL

Accessing Geodatabase through SQL



Demo

Accessing a 

geodatabase

through SQL

• Resolving

- Coded Value Domains

- Feature Dataset Relationships

- Domain References



What is a spatial type? 

• A spatial type (ST) is a type that stores geometry data in a single 

spatial attribute

- Geometry type, coordinates, dimension, spatial reference

• Spatial Index

- Access path for quick retrieval 

• Relational and geometry operators and Functions

- Constructors 

- Accessor

- Relational 

- Geometry 



What are the benefits of a spatial type? 

• Efficiency

- Spatial data and methods are stored in the database

- Applications access native dbms type

• Accessed using common API’s and SQL

- C, C++, C#, Java, OLEDB

- Adheres to standards for SQL access



• Using SQL with a spatial type you can

- Create tables with a spatial attribute

- Read and analyze the spatial data

- Insert, update, and delete simple geometry data

Spatial Type SQL

What are the benefits of a spatial type? 



• Can use SQL to create, insert and update tables

- Need to register the table with the geodatabase to participate in geodatabase 

functionality

• Cannot modify schema of registered tables (i.e add a field) or create 

geodatabase items (i.e domains) through SQL

CREATE TABLE hazardous_sites

(oid INTEGER NOT NULL, site_id INTEGER,

name VARCHAR(40), location sde.st_geometry)

Accessing geodatabase through SQL



Accessing Geodatabase through SQL

• Editing feature classes with SQL and spatial type

- Simple features (Points, lines, polygons)

- Without geodatabase behavior

- Use the Is_Simple function to determine whether your data can be updated

• Editing tables/feature classes

- Use SQL SELECT statements

- Directly editing the database tables (no delta tables)

- Non-versioned editing in ArcGIS terminology

• Editing versioned tables/feature classes

- Requires versioned views



Editing tables/feature classes

• Use SQL to update, insert and delete data from tables that are not versioned

• Can leverage DBMS functionality

- Unique indexes, constraints, referential integrity, default values, triggers 

• Requires a unique identifier (ObjectID) when inserting

- Used to uniquely identify rows in tables in a geodatabase

- Obtained from classes sequence or procedure

- Object ID is used by ArcGIS to do such things as display selection sets and perform 

identify operations on features



Editing versioned tables/feature classes

• Changes tracked on delta tables (Adds and Deletes tables)

• Support concurrent editing with long transactions (hours/days)

• Undo/redo editing experience

• No locking or data extraction required



Editing versioned tables and feature classes

• Use versioned views

- Created when data registered as versioned with ArcGIS 10.1 and later

- Conditions where no view is present; use the “Enable SQL Access” command.

• Must use several stored procedures/commands installed with the geodatabase

- Create a new version (create_version)

- Set which version to access (set_current_version)

- Perform edits within the new version (edit_version )

• Unlike non-versioned editing, ObjectID values for new records are 

automatically generated

- Changes are made to the delta tables

- Versions must be reconciled through ArcGIS



Demo

Accessing a 

geodatabase

through SQL

• Editing

- Versioned and Non Versioned Classes

- Working with Views



What’s new in ArcGIS 10.3?

• Nine tools added to the Geodatabase Administration toolset for enterprise 

geodatabase management

- Replace functionality previously performed using ArcSDE administration command 

line utilities. 

• Configure Geodatabase Log File Tables

• Create Raster Type

• Delete Schema Geodatabase

• Diagnose Version Metadata

• Diagnose Version Tables

• Export Geodatabase Configuration Keyword 

• Import Geodatabase Configuration Keyword

• Repair Version Metadata

• Repair Version Tables



Summary

• GDB is open to SQL Devs

• Through SQL use XML field in the 

GDB_Items table

• Can also edit data through SQL


