
Geodatabase Programming 

with SQL
Craig Gillgrass

February 11, 2015 | Washington, DC

DevSummit DC



Assumptions

Please turn off cell phones

• Basic knowledge of SQL and relational databases

• Basic knowledge of the Geodatabase 

• We’ll hold all questions till end



Roadmap

• Using databases in ArcGIS

• Building on databases with the geodatabase

• Accessing the schema of a geodatabase through SQL

• Editing a geodatabase through SQL



Databases

• You might have spatial or nonspatial data in a database that you want to use in 

ArcGIS

- Oracle, SQL Server, DB2, Informix, PostGreSQL, Netezza

• You can connect directly to a supported database and view the data in the 

tables by making a connection from the Catalog tree in ArcGIS for Desktop

• To filter what data appears in ArcMap, you can use a query layer

• Use SQL to access the data within the database



What can you access in a Database?

• Rows and Tables

- Containing zero to many rows

- One to many columns

- All rows in the table have the same schema

• Can perform table management tasks

- View and modify schema

- Add and remove rows

- Perform queries



What can you access in a Database? …

• A table with a column that stores a spatial type

- We call this a feature class

• Each row represents a feature

• The fields in each row represent various characteristics or properties of the 

feature

• One of the fields holds the feature geometry which is stored as a spatial type



Viewing database data in ArcGIS

• Tables (with and without a spatial type) are viewed in ArcGIS through 

a query layer

- Define the layer yourself or let ArcGIS discover how to define it

• Query Layer is a layer that is defined by a SQL query

- Provide data integration with geodatabases as well as from databases

- Can quickly integrate spatial and nonspatial information into GIS projects 

independently of where and how that information is stored



Viewing database data in ArcGIS

• Simple SQL query

SELECT * FROM dbo.HurricaneTracks_2005 hurricane



Viewing database data in ArcGIS

• Most complex SQL query that uses casting, derived columns and spatial 

operators

SELECT county.id, county.State_name, county.NAME county_name, 

county.POP1990 population, CAST(county.POP1990 as 

decimal)/CAST(states.POP1990 as decimal)*100 PctStatePop, 

county.Shape FROM dbo.HurricaneTracks_2005 hurricane, dbo.counties

county, dbo.states states WHERE hurricane.NAME = 'KATRINA' AND 

hurricane.Shape.STIntersects(county.shape) = 1



Viewing database data in ArcGIS

• Most complex SQL query that uses casting, derived columns and spatial 

operators

SELECT county.id, county.State_name, county.NAME county_name, 

county.POP1990 population, CAST(county.POP1990 as 

decimal)/CAST(states.POP1990 as decimal)*100 PctStatePop, 

county.Shape FROM dbo.HurricaneTracks_2005 hurricane, dbo.counties

county, dbo.states states WHERE hurricane.NAME = 'KATRINA' AND 

hurricane.Shape.STIntersects(county.shape) = 1



Viewing database data in ArcGIS

• Most complex SQL query that uses casting, derived columns and spatial 

operators

SELECT county.id, county.State_name, county.NAME county_name, 

county.POP1990 population, CAST(county.POP1990 as 

decimal)/CAST(states.POP1990 as decimal)*100 PctStatePop, 

county.Shape FROM dbo.HurricaneTracks_2005 hurricane, dbo.counties

county, dbo.states states WHERE hurricane.NAME = 'KATRINA' AND 

hurricane.Shape.STIntersects(county.shape) = 1



Viewing database data in ArcGIS

• Most complex SQL query that uses casting, derived columns and spatial 

operators

SELECT county.id, county.State_name, county.NAME county_name, 

county.POP1990 population, CAST(county.POP1990 as 

decimal)/CAST(states.POP1990 as decimal)*100 PctStatePop, 

county.Shape FROM dbo.HurricaneTracks_2005 hurricane, dbo.counties

county, dbo.states states WHERE hurricane.NAME = 'KATRINA' AND 

hurricane.Shape.STIntersects(county.shape) = 1



Viewing database data in ArcGIS

• Most complex SQL query that uses casting, derived columns and spatial 

operators

SELECT county.id, county.State_name, county.NAME county_name, 

county.POP1990 population, CAST(county.POP1990 as 

decimal)/CAST(states.POP1990 as decimal)*100 PctStatePop, 

county.Shape FROM dbo.HurricaneTracks_2005 hurricane, dbo.counties

county, dbo.states states WHERE hurricane.NAME = 'KATRINA' AND 

hurricane.Shape.STIntersects(county.shape) = 1



Other Database Tasks

• Connecting to a database 

• Supported data types

• Viewing data and query layers

• Administer the database (e.g. grant access)

• Create new tables and alter schema



Building on top of Database Functionality
Cases where you want to do more with your data

• Store business rules with the data so they’re available to everyone who 

accesses the data

• Advanced data modeling such as with transportation or utility networks

• Store and work with detailed cartography

• Multiple editors working on the same data at the same time without impacting 

each other



What is the Geodatabase?

• A physical store of geographic data

- Scalable storage model supported on different platforms

• Core ArcGIS information model

- A comprehensive model for representing and managing GIS data

- Implemented as a series of simple tables

• A transactional model for managing GIS workflows

• Set of components for accessing data



Geodatabase is based on relational principles

• The geodatabase is built on an extended relational 

database

• Leverages key DBMS principles and concepts to store 

geographic data as tables in a DBMS

• The core of the geodatabase is a standard relational 

database schema

- a series of standard database tables, column types, indexes, 

and other database objects



Geodatabase Schema

• There are two sets of tables:

- Dataset tables (user-defined tables)

- Geodatabase system tables

XML

SQL Type

System tables

User data



User-defined tables

• Stores the content of each dataset in the geodatabase

• Datasets are stored in 1 or more tables

• Spatial Types enhance the capabilities of the geodatabase

- SQL access to geometry

- Industry standard storage model and API

XML

SQL Type

System tables

User data



Geodatabase system tables

• System tables store definitions, rules, and behavior for datasets

• Tracks contents within a geodatabase

• 4 main system tables

• Geodatabase schema is stored primarily within an XML field

XML

SQL Type

System tables

User data



Geodatabase Schema… 

XML

SQL Type

System tables

User data



Geodatabase Schema… 

XML

SQL Type

System tables

User data



Geodatabase Schema… 

XML

SQL Type

System tables

User data



Geodatabase Schema… 

XML

SQL Type

System tables

User data



Geodatabase Schema… 

XML

SQL Type

System tables

User data



Accessing Geodatabase through SQL

• Access schema and properties of existing datasets

- Use SQL statements to query the definition attribute on the gdb_items table

• Editing tables/feature classes, whether versioned or not

- Via versioned views with versioned classes

• Create tables with SQL containing spatial or raster types

• Leverage SQL functions to evaluate attributes and spatial relationships, 

perform spatial operations, and return and set spatial properties



• With SQL, you access the data at the DBMS 

level

- Bypass behaviors and functionality enforced by 

the geodatabase or ArcGIS clients

• Need to be aware of what you can and 

cannot edit

- Relationship classes 

- Geometric networks 

- Topology…

DBMS

Geodatabase

ArcGIS

Python

SQL

Accessing Geodatabase through SQL



Demo

Accessing a 

geodatabase

through SQL

• Resolving

- Coded Value Domains

- Feature Dataset Relationships

- Domain References



What is a spatial type? 

• A spatial type (ST) is a type that stores geometry data in a single 

spatial attribute

- Geometry type, coordinates, dimension, spatial reference

• Spatial Index

- Access path for quick retrieval 

• Relational and geometry operators and Functions

- Constructors 

- Accessor

- Relational 

- Geometry 



What are the benefits of a spatial type? 

• Efficiency

- Spatial data and methods are stored in the database

- Applications access native dbms type

• Accessed using common API’s and SQL

- C, C++, C#, Java, OLEDB

- Adheres to standards for SQL access



• Using SQL with a spatial type you can

- Create tables with a spatial attribute

- Read and analyze the spatial data

- Insert, update, and delete simple geometry data

Spatial Type SQL

What are the benefits of a spatial type? 



• Can use SQL to create, insert and update tables

- Need to register the table with the geodatabase to participate in geodatabase 

functionality

• Cannot modify schema of registered tables (i.e add a field) or create 

geodatabase items (i.e domains) through SQL

CREATE TABLE hazardous_sites

(oid INTEGER NOT NULL, site_id INTEGER,

name VARCHAR(40), location sde.st_geometry)

Accessing geodatabase through SQL



Accessing Geodatabase through SQL

• Editing feature classes with SQL and spatial type

- Simple features (Points, lines, polygons)

- Without geodatabase behavior

- Use the Is_Simple function to determine whether your data can be updated

• Editing tables/feature classes

- Use SQL SELECT statements

- Directly editing the database tables (no delta tables)

- Non-versioned editing in ArcGIS terminology

• Editing versioned tables/feature classes

- Requires versioned views



Editing tables/feature classes

• Use SQL to update, insert and delete data from tables that are not versioned

• Can leverage DBMS functionality

- Unique indexes, constraints, referential integrity, default values, triggers 

• Requires a unique identifier (ObjectID) when inserting

- Used to uniquely identify rows in tables in a geodatabase

- Obtained from classes sequence or procedure

- Object ID is used by ArcGIS to do such things as display selection sets and perform 

identify operations on features



Editing versioned tables/feature classes

• Changes tracked on delta tables (Adds and Deletes tables)

• Support concurrent editing with long transactions (hours/days)

• Undo/redo editing experience

• No locking or data extraction required



Editing versioned tables and feature classes

• Use versioned views

- Created when data registered as versioned with ArcGIS 10.1 and later

- Conditions where no view is present; use the “Enable SQL Access” command.

• Must use several stored procedures/commands installed with the geodatabase

- Create a new version (create_version)

- Set which version to access (set_current_version)

- Perform edits within the new version (edit_version )

• Unlike non-versioned editing, ObjectID values for new records are 

automatically generated

- Changes are made to the delta tables

- Versions must be reconciled through ArcGIS



Demo

Accessing a 

geodatabase

through SQL

• Editing

- Versioned and Non Versioned Classes

- Working with Views



What’s new in ArcGIS 10.3?

• Nine tools added to the Geodatabase Administration toolset for enterprise 

geodatabase management

- Replace functionality previously performed using ArcSDE administration command 

line utilities. 

• Configure Geodatabase Log File Tables

• Create Raster Type

• Delete Schema Geodatabase

• Diagnose Version Metadata

• Diagnose Version Tables

• Export Geodatabase Configuration Keyword 

• Import Geodatabase Configuration Keyword

• Repair Version Metadata

• Repair Version Tables



Summary

• GDB is open to SQL Devs

• Through SQL use XML field in the 

GDB_Items table

• Can also edit data through SQL


