DevSummit DC

February 11, 2015 | Washington, DC

ArcGIS GeoEvent Extension for Server: Building Real-Time Web Apps

Ken Gorton GIS Solutions Engineer Esri kgorton@esri.com

Agenda

Goal : Provide an overview of the tools and techniques used to deliver dynamic content to a web app.

- Activities Covered
 - Collecting live streams of data
 - Analyze and react to geographic events
 - Deliver analysis results to the user
 - Allow user to interact with the data

- Products Used
 - GeoEvent Extension for Server
 - ArcGIS API for JavaScript

ArcGIS GeoEvent Extension for Server

Integrates and Exploits real-time data

- Integrates real-time streaming data into ArcGIS
- Performs continuous processing and real-time analytics
- Sends updates and alerts to those who need it where they need it

ArcGIS Web API for JavaScript

- Gives developers tools to add GIS functionality to web applications
 - Interactive maps for visualizing data.
 - Widgets for finding addresses, editing data, making legends...
 - Analysis Run a model and view results, enrich existing data with detailed demographic information
 - Embed into existing web page or make new focused application

Demo

Demonstration

International Space Station

Displaying Real-Time data with Feature Layer and Stream Layer

Sending Real-time Events to Clients

Patterns – pull and push

- Pull from a Feature Services
 - Must be backed by an enterprise geodatabase (EGDB)
 - Clients poll to get updates
- Push via Send Features to a Stream Service output
 - Low latency, high throughput
 - Clients subscribe to features of interest

Stream Layer

What is it?

- A layer in the Javascript API
 - Available since version 3.6

• Draws data on map using client-side graphics

G

	Feature Layer	
T	нттр	RESPONSE
	Feature service	
	ArcGIS Server	

Stream Layer

Lifecycle

FeatureCollection:
{ layerDefinition:
 { geometryType: esriGeometryPoint,
 timeInfo: {
 startTimeField: "StartTime",
 trackIdField: "Name" },
 fields: [...] },
 featureSet: null }

- Options
 - webSocketUrl: ws://gep:6180/urlpath
 - purgeOptions:

 { displayCount: 500 }

• More responsive

- Features appear on the map right away.
- More efficient transfer of data.
 - Features are only sent once.
 - Messages sent without extra headers

Use case: 100,000 Stock Quotes / Second

Performance

Web Sockets versus Http Polling

- HTTP Headers can add a lot of overhead
- Polling overhead
 - One frame = 871 bytes
- Web Socket overhead
 - One frame = 2 bytes

Bits per second	700,000,000				
	600,000,000			Polli Web	ng Sockets
	500,000,000 -				
	400,000,000				
	300,000,000				
-	200,000,000				
	100,000,000				
	0 -				
		Use Case A 6,968,000 16,000	Use Case B 69,680,000 160,000	Use Case C 696,800,000 1,600,000	

(credit: www.websockets.org/quantum.html)

Stream Layer

What is needed

GeoEvent Extension Output Connector

- Send Features to a Stream Service
- Browser that supports Web Sockets
 <u>http://caniuse.com/websockets</u>

 Web Socket protocol allowed on network ws://, wss://

No Plugins Required (standard JavaScript)

Demo

Demonstration

Consuming Streams of Features with the Stream Layer

// Instantiate StreamLayer

- // 1. socketUrl is the url to the GeoEvent Processor web socket.
- // 2. purgeOptions.displayCount is the maximum number of features the
- // layer will display at one time
- // 3. trackIdField is the name of the field that groups features
- var layer = new StreamLayer(featureCollection, {
 - socketUrl: txtWsUrl.value,
- purgeOptions: { displayCount: 500 },
- trackIdField: featureCollection.layerDefinition.timeInfo.trackIdField,
- infoTemplate: new InfoTemplate("Route Id: \${message}", "Timestamp: \${timestamp}")

});

Finding and Consuming Real-Time Data

Receiving Real-Time Data

Input Connectors

• Easily integrate real-time streaming data with ArcGIS by using an input connector.

Demo

Demonstration

Connecting to Real-Time Data Feeds

Applying Real-Time Analytics

Applying real-time analytics GeoEvent Services

- A GeoEvent Service configures the flow of GeoEvents,
 - the Filtering and GeoEvent Processing steps to perform,
 - what input(s) to apply them to,
 - and what outputs(s) to send the results to.

Applying real-time analytics

GeoEvent Processing

You can perform continuous analytics on GeoEvents as they are received using a processor.

Stream Services

Real-Time GIS Apps using Stream Services

Developer Productivity

- Make streams of data easy to discover and use.
- Customizable
 - Individualized client connections provide filtering and projection.

Scalable

- Features published to a stream services are accessible from any machine in the cluster.

Stream Services – The Future of Streaming Data

Demo

Demonstration

Stream Services

Stationary Sensor Data on a Real-Time Web App

• Stationary geographic feature with attributes that change over time.

Demo

Demonstration

Stream Gauge Sensor Display

What We Covered Today

- Consumed Live data from Sensors and a Web Service
- Filtered and generated incidents from spatial behavior
- Pushed events to a web app through feature services and web sockets
- Used JavaScript API Stream Layer to receive messages pushed from server and display them on a map
- Saw a preview of the Stream Service that will allow developers to easily receive data through a web socket and set filters that are processed on the server

Where to learn more?

Resources

- To learn more, visit the tutorial in the Esri Gallery:
 - http://links.esri.com/geoevent-processor
 - Introduction
 - Notifications
 - RSS
 - Web Sockets
 - Working with HTTP
 - GeoEvent Caches
 - **REST Admin API**

This tutorial is the first in a series of tutorials introducing you to the capabilities of ArcGIS GeoEvent Processor for Server.

Code Sample by GeoEventTeam Last Modified: March 22, 2014

Tutorial - REST Admin API in GeoEvent Processor (ArcGIS 10.2.x)

This tutorial introduces you to working with the REST Admin API and GeoEvent Processor.

Code Sample by GeoEventTeam Last Modified: March 14, 2014

Tutorial - WebSockets in GeoEvent Processor (ArcGIS 10.2.x) This tutorial introduces you to working with WebSockets in GeoEvent Processor.

Code Sample by GeoEventTeam Last Modified: March 27, 2014

(0 ratings, 0 comments, 0 downloads)

Additional resources

ArcGIS API for JavaScript Resource Center
 <u>https://developers.arcgis.com/javascript</u>

Stream Layer Code Samples
 <u>https://developers.arcgis.com/javascript/jssamples/layers_streamlayer.html</u>

Questions / Feedback?

To learn more: https://developers.arcgis.com/javascript http://pro.arcgis.com/share/geoevent-processor

Ken Gorton GIS Solutions Engineer Esri kgorton@esri.com

Understanding our world.