
Hacking Cities with Esri
CityEngine

Markus Lipp

CityEngine
http://www.esri.com/software/cityengine

3D procedural modeling and design solution

- Procedurally generate
3D urban content

- From 2D GIS geometry and attributes
- Using algorithms and

parametric rules

- 3D City Design
- Iterative design
- Real-time feedback
- Street sketching

Procedural modeling
3D model creation using rules / algorithms

Iteratively refine a design by creating more and more detail

- Base geometry

- Procedural rules

Base geometry Final 3D model

Procedural Modeling vs. Manual Modeling

Time reduction / cost saving

GIS Data as Input
ArcGIS example

Attributes (height, roof type, street width)

Geometry (parcels, footprints, streets)

Rules

3D city content from GIS data
procedural city modeling

Rule based 3D cities

3D City Design – Procedural Approach

Add a floor Add a roof

Urban planning example

New development – draw streets Reporting (area ratios…)

3D City (Geo)design
Iterative analysis while designing

Shadow
analysis

Skyline
analysis

Design

Analyze

Decision

CityEngine 2012 – Opportunities for Developers

Rules (CGA)

Phyton

Procedural
core

ArcGIS 10.1

Export/import

CityEngine 2013 for Developers

Rule
packages

Exports

ArcGIS 10.2

ArcGIS Server
GP tool

CE SDK

3rd party

3D engines

Maya

CityEngine 2013 for Developers

Rule
Packages

exports

ArcGIS 10.2

ArcGIS Server
GP Tool

CE SDK

3rd party

3D Engines

Maya

1

2
3 4

1. Rules, Rule Packages, CGA

• Rule: description of shape refinement

• Rule Package: multiple rules & assets

• CGA: «scripting language for shapes»

CGA Shape Grammar - Definition

• A shape consists of:
- Symbol
- Attributes
- Geometry (polygonal mesh)
- Oriented bounding box called

scope (numeric attributes)

• Initial shape: axiom

• A rule describes the transformation of a shape
into one or more successor shapes

GIS Lot as Initial Shape

• Symbol = start rule
• Attributes: height, zoning…
• Geometry = only one face
• Scope oriented on first edge

Rule Example

• Lot and Mass are shapes
• A modified copy of shape Lot becomes shape Mass
• Mass is called a leaf shape
• Output geometry = all leaf shapes

 Lot --> extrude(10) Mass

Lot with shape symbol Lot

Rule application (generation)

Resulting shape Mass
Displayed geometry

Multiple rules

• Rule #2 is a matching rule for shape Mass
• Shape Mass is replaced by shapes C and D
• Mass NOT leaf shape here

 Lot --> extrude(10) Mass
 Mass --> C D

Rule #1
Rule #2

CGA Syntax Example

attr height = 20

const heightG = 8.5

Lot --> extrude(height) Mass

Mass --> comp(f) { top : Roof.
 | front : Frontfacade
 | side : Facade}

Facade -->
split(y){heightG: Groundfloor
| ~1 : UpperFloors}

Groundfloor -->
case scope.sx > 10 :
color("#cccccc")
else : color("#ffcccc")

• Rules (may have parameters)
Lot, Mass, …

• User-defined attributes and
constants: height, heightG

• Boolean, float and string
expressions
20, 8.5, ("#cccccc"),
scope.sx > 10

• CGA-specific keywords
attr, top, front, case

• CGA operations (may have
parameters)
extrude(height),
comp(f)

CGA operations overview

Geometry creation

Geometry subdivision

Texturing

Transformations

User Interface in CityEngine

• Example building rule file

2. Exporting and Using Rule Packages

Recap: Rule package is:
• Combination of CGA rules with assets

- Textures, meshes

• Author in CityEngine, used in GP Tools or SDK

Export from CityEngine

right click on rule, “Share As…”

Using in ArcScene - CityEngine GP Tool

CityEngine 2013

Demo

CityEngine GP Tool
Use Cases

• 2D to 3D: automatic building generation from data model

- E.g. visualize new development options

CityEngine GP Tool
Use Cases

• 2D to 3D: generation of zoning volumes from data model
- Intuitive visualization of zoning regulations

- Analyze impact of regulation changes

CityEngine GP Tool
Use Cases

• 3D to 3D: Generate panels on 3D multipatches
- Generic rule that subdivides geometry, places point features and/or generates

attributes

- Distribute patches on 3D geometry

3. CityEngine SDK
“Proceduralize” your in-house modeling pipeline

Your geo-
referenced

3D city model Your GIS tool

Rule
packages CE SDK Rule

authoring

Custom
Pipelines
(Movies, …)

ArcGIS
Server

ArcGIS
Desktop

CityEngine
Desktop

CityEngine SDK
Basis for an Eco-System

Libraries / Engines
(Games, …)

 Authoring

Server Apps
(Models)

Vertical
Apps

CityEngine SDK
System Architecture

Shape Processing Engine
Shape

Processing
Unit

Shape
Processing

Unit

Shape
Processing

Unit
…

Codecs

• MultiPatch
• Collada
• Wavefront OBJ
• Autodesk FBX
• Pixar RenderMan
• OpenGL Renderers
• CityEngine WebScene
• Indexed Scene Cache
• … Adaptors

Rule Package RPK Geodatabase ZIP/7ZIP Archive File System

Client Callbacks
C++ C++ C++ C++

Wrapper / Bindings
to any other

language

Client App Rule Package
Generator

CityEngine SDK
Data & Control Flow

cgac

CityEngine SDK

Shape
Processing

Unit

Shape
Processing

Unit

Codecs

Adaptors

CGA CGB
Rules

Features

Resources

3D Models

Textures
Generated 3D

Shape
Processing

Unit …

SDK Usage Example – Maya Plugin

4. Python Scripting

• Automate UI tasks
• CE 2013: All of functions accessible in Python

70%

30%

CityEngine 2012

Tools available in Python Unsupported tools

100%

0%

CityEngine 2013

Tools available in Python Unsupported tools

Python Scripting

• Python Console:
- Call CE or conventional Python commands interactively
- Command completion

Python Scripting

• Python Editor
- Convenient editor
- Edit and execute

Python Scripting

• Extensive command set
see CityEngine Help for reference

• Use your own Python modules

Python: Export via script

def exportToObj(shapes, exportName):

 # create new export settings class, define

export format

objExportSettings = OBJExportModelSettings()

 # specify export settings

objExportSettings.setGeneralName(exportName)

 # do the export

ce.export(shapes, objExportSettings)

if __name__ == '__main__':

exportToObj("pythonExported") scripts/export.py

Python: Export to a set of files

def exportMulti(shapes, exportName):

 for i in range(10,20):

 # set value of height attribute
 ce.setAttribute(shape, "/ce/rule/height", i)

 # call export function
 exportToObj(shape, exportName + str(i))

if __name__ == '__main__':
exportMulti("pythonExported")

scripts/export.py

Python: Script Based Export
• Python scripts can run parallel to the export
• Can process arbitrary report data via callback

functions
• Powerful mechanism in combination with CGA
report()

 # Called before the export starts.
def initExport():

 # Called for each initial shape before
generation.
def initModel():

 # Called for each initial shape after
generation.
def finishModel():

 # Called after all initial shaped are
generated.
def finishExport():

Python: Write report data to file 1

def finishModel(exportContextUUID, shapeUUID,
modelUUID):
shape = Shape(shapeUUID)
model = Model(modelUUID)

 # get report variable 'LotArea' of generated model
reports = model.getReports()
shapeName = ce.getName(shape)
lotAreaSum = sum(reports['LotArea'])

 # storing data to global variable
global REPORT
REPORT += "%s,%f\n" (shapeName, lotAreaSum)

def finishExport(exportContextUUID):
write collected report data to file
global REPORT
filename = ce.toFSPath("data/report_LotAreas.txt")
file = open(filename, "w")
file.write(REPORT)
file.close()

scripts/reportExport_1.py

Python: Write report data to file 2

• Start the script based exporter with
python script containing the
callback functions

• Collected report data is written to file
data/report_LotAreas.txt

Lot_3,2615.475098
Lot_2,2573.790283
Lot_7,1753.116943
Lot_4,2815.327881
Lot_1,1365.432495
Lot_6,2164.343994
Lot_5,2069.638184
Lot_0,2551.697510

CityEngine 2013 timeline

• November
• SDK: Binaries in CE2013 – coming in Nov
• SDK Headers, Documentation, Examples (incl Maya

Plugin) TBR in GIT repository over the next 2-3 months

Summary – CityEngine 2013 great for Developers

Rule
Packages

CE SDK GP Tool

ArcGIS integration

10.1

10.2

3D WebScene

3D WebScene
Feature from

CityEngine Rules

	Hacking Cities with Esri CityEngine
	Slide Number 2
	CityEngine�http://www.esri.com/software/cityengine
	Procedural modeling
	Procedural Modeling vs. Manual Modeling
	GIS Data as Input
	3D city content from GIS data
	3D City Design – Procedural Approach
	3D City (Geo)design
	CityEngine 2012 – Opportunities for Developers
	CityEngine 2013 for Developers
	CityEngine 2013 for Developers
	1. Rules, Rule Packages, CGA
	CGA Shape Grammar - Definition
	GIS Lot as Initial Shape
	Rule Example
	Multiple rules
	CGA Syntax Example
	CGA operations overview
	User Interface in CityEngine
	2. Exporting and Using Rule Packages
	Export from CityEngine
	Using in ArcScene - CityEngine GP Tool
	CityEngine 2013
	Slide Number 25
	CityEngine GP Tool
	CityEngine GP Tool
	CityEngine GP Tool
	3. CityEngine SDK
	CityEngine SDK
	CityEngine SDK
	CityEngine SDK
	Slide Number 33
	4. Python Scripting
	Python Scripting
	Python Scripting
	Python Scripting
	Python: Export via script
	Python: Export to a set of files
	Python: Script Based Export
	Python: Write report data to file 1
	Python: Write report data to file 2
	CityEngine 2013 timeline		
	Summary – CityEngine 2013 great for Developers
	Slide Number 45
	ArcGIS integration

