

Technical Workshop Outline

- Documentation, Design and Configuration
- Example 1: Clip and Ship
- Example 2: Suitability Overlay
- Performance Tuning
- Performance Analysis
- Troubleshooting

Geoprocessing Service Documentation

- Geoprocessing Resource Center
 - -http://resources.esri.com/Geoprocessing/
- Desktop Help → Geoprocessing → Geoprocessing with ArcGIS Server
 - -http://webhelp.esri.com/arcgisdesktop/9.3/index.cfm?TopicNa me=An_overview_of_geoprocessing_with_ArcGIS_Server
- Examples
 - A dozen examples
 - -All examples can be downloaded from the resource center
 - http://resources.esri.com/Geoprocessing/index.cfm?fa=code Gallery

Geoprocessing Services

- The geoprocessing service allows you to publish custom tools to be used via ArcGIS Server.
- Geoprocessing services can be used by many different client applications
 - -ArcGIS Desktop
 - -ArcGIS Engine
 - -ArcGIS Explorer
 - -Web ADF
 - -WSDL
 - -Rest
 - -JavaScript
 - -FLEX
 - -Silverlight

Geoprocessing Services

- Model tools or Script tools contain the geoprocessing functionality run by geoprocessing services
 - -We do not recommend that you publish system tools directly.
- A geoprocessing service is a tool plus its associated data
- Endless array of tasks can be created
 - -Spatial analysis (vector, raster, network...)
 - Data Management (geodatabase, file based data)
 - -Conversion (ETL and data loading)
 - -etc
- You need to be knowledgeable about using geoprocessing tools to create a good geoprocessing service.

Geoprocessing Service Behavior

- Geoprocessing Services are very flexible and allow many different behaviors and optimizations
- Before Authoring and Publishing, identify what you want your service to do and how you want it to behave with clients.

Geoprocessing Services Configurations

- Geoprocessing Service from a toolbox
 - Each tool becomes a task
 - Client draws the results
- Geoprocessing Service from a map document
 - Each Tool Layer becomes a task
 - Tasks can access layers in the map document
 - Drawing Results two options
 - Map Service draws the results
 - Client draws results

Use a Map Document if:

- Want to use a map service to draw the results
 - Better cartographic rendering of results
 - -Render large results
 - Output data too large to down load
 - -Web clients cannot draw raster
- Using a layer improves the performance of the tool
 - Network Analyst Layer
 - Select by Location or Select by Attribute
- Want a choice list of layers in the map document
 - -Clip and ship with the ability to select the layer to clip

Publishing Considerations – Execution Mode

- Asychronous (Submit Job)
 - Results are saved on the server
 - Results can be drawn on the server
 - Results can also be downloaded if desired
 - Clients free to do other tasks
 - e.g. in ArcMap you can pan/zoom, run other tools while the job is running
 - Appropriate for longer processing jobs.
- Synchronous (Execute)
 - Client always receives and draws data.
 - Desktop Client waits until job is completed and results are returned
 - Appropriate for faster processing jobs. (<10 seconds)

Demo – Creating a Tool Layer and Publishing a Map Document

• Examples:

- -Clip and Ship: enter area to clip a layer on the server and return a zip file
- -Extract Features: clip features based on a zip code

• Highlights:

- Using a tool layer for a geoprocessing service
- Using input features
- Having a choice list of layers on the server
- -Doing selection on a layer in the server
- –Returning a zip file

Tool Layer

- What is a tool layer?
 - A special group layer containing outputs of a tool
 - Defines parameter symbology
- How to create?
 - Drag and drop a tool into a map
 - 2. Open tool dialog and run
 - Tool outputs are added as sub-layers

Authoring a Model suitable for publishing

- Models and scripts that are run by services need to have certain characteristics to run correctly.
- Changes will likely be required to allow existing models and scripts to be published.
- Things to consider when creating a model for use as a Geoprocessing Service
 - Data Management (Source, Intermediate, Output)
 - Data Type of Parameters
 - Symbology
 - Optimization

Authoring a Model suitable for publishing

- The tool must be portable
 - —A new job workspace is created on the server each time the tool is executed.
 - -The tool needs to be constructed so that it will run in the job workspace created by the server.
 - 🗉 🗀 arcgisserver
 - 🗀 arcgiscache
 - 😑 🗀 arcgisjobs
 - - 🗉 🧀 J9711F162B991423BA38DE2628EFB7A5E
 - 🗉 🧀 JA2BBE914F7144214817CDD905E095397
 - □ JCACFAEF428004CD99731BE344CC9657D
 - ☐ JCF00CA5933E74647A23CDCF3D89C9793

Data Management – Intermediate and Output

- When the server runs a model, the output and intermediate data should be written to the job directory
- Use the %ScratchWorkspace% inline variable in your paths.
 - -%scratchworkspace%\outputfc.shp
- A file geodatabase named "scratch.gdb" is guaranteed to be in the jobs folder created for each job submission
 - -%scratchworkspace%\scratch.gdb\outputfc
- You can use in-memory workspace for feature classes and tables
 - -In_memory\outputfc
 - -Do not use for output that is drawn by the result map server.

Data Management – Source Data

- If the data is not large or centralized, it can be useful to package everything in a folder and use relative paths
 - http://webhelp.esri.com/arcgisdesktop/9.3/index.cfm?TopicName=Me thods_for_distributing_tools
- If the data is distributed around the network, use UNC paths when building the model/script.
- Copy SDE Connection files relative to tbx.
 - -Will not find "database connections" node.

Authoring a Model suitable for publishing

- A subset of desktops data types are supported as valid parameters for a geoprocessing service
 - Subset determined by light weight clients:
 - ArcGIS Explorer
 - Web Mapping Applications
- Publishable tools need to be built accordingly.

- -Feature Set
- -Record Set
- -Raster Dataset
- -Feature Layer
- -Raster Layer
- -Table View
- -Layer
- -File
- -String
- -Long
- -Double
- -Boolean
- -Date
- -Linear Unit
- -Feature Class*
- -Table*

*output only

Parameter Types

Parameter Types – Feature Sets and Record Sets

- Feature Class and Table variables
 - Publish only as output parameters.
- Feature Set and Record Set variables
 - Use Feature/Record Set for interactive input of features or rows
 - Schema defined in properties from existing layer, feature class, or table
 - Fields
 - Field domains
 - Feature type
 - Symbology

Parameter Types – Layers

- Layer parameter type allows clients to select from layers in a map on the server.
 - Enables the use of datasets on the server.
 - Gives ability to work with "non-publishable" data types.
- Models that use input layers must be published as Tool Layers in Map Documents

Parameter Types - File

- Publishes as input or output parameter
- Can be used to upload zip files to a server.
 - Samples in the help:
 http://webhelp.esri.com/arcgisdesktop/9.3/index.cfm?id=907&pid=899
 <a href="http://webhelp.esri.com/arcgisdesktop/9.3/index.cfm?id=907&pid=899
 <a href="http://webhelp.esr
 - Can send anything up to the server in a zip file and unzip server side.

Demo: Using a geoprocessing service with a result map service draw

- Example: Suitability Overlay
- Highlights
 - -Use a script for a geoprocessing service
 - -Use a map service to draw raster results

Publishing Considerations

- Maximum Number of Records
 - This property limits the number of features returned from the server.
 The default is 500.
 - Prevents large amounts of data from being transported across the internet.
 - Can be a gotcha. If your results don't display because of this reason, there should be a message in the tool messages
- Number of Instances
 - How many concurrent requests can run
- Timeout
 - How long before the service automatically kills itself
- Show Messages
 - Usually only used for debugging initial development

Tuning: UNC Paths

- Reading and writing data to UNC paths is slower
- If using one server machine avoid UNC where possible
 - Use local path for jobs directory.
 - Use local path to source data if possible.
- If using a distributed server (many machines)
 - Jobs directory must be a UNC path.
 - Can use the in_memory workspace for feature classes and tables.
 - Make a copy of the input data on each SOC machine.
 - Use LocalJobsDirectory setting!

Local Jobs Directory

- Local Jobs Directory reduces the use of UNC paths.
- When specified all intermediate and output data are written to a local job directory
- If the service is Asynchronous the local job directory is copied to the main server jobs directory
- Only relevant if server is distributed or jobs directory is a UNC location.

Setting the Local Jobs Directory (Pre 9.3.1)

- Stop the ArcGIS Server Object Manager (SOM) service
- Manually edit the geoprocessing service's .cfg file and add the <LocalJobsDirectory> tag.
 - -.cfg for each service found in <install location>\Server\cfg
- Restart the SOM
- Restart the geoprocessing service.

Setting the Local Jobs Directory (9.3.1)

Tool Optimization – In Memory

- Data can be written out to the "in_memory" workspace.
 - Only appropriate when overhead of writing to disk is significant portion of the total time it takes to run the model
 - If output is "in_memory" the client must draw the result
- Use the "in_memory" keyword to indicate that a dataset will be stored in memory.

Tool Optimization – Pre-Processing

- Pre-process any geoprocessing operations that you can and remove them from your model.
 - EX: A suitability model may use slope and aspect as criteria. It is not necessary to run slope every time the model is executed. Pre-process slope and aspect.

Server Tuning: Large Input Datasets

- Large input record set or raster
 - Increase the web server maximum size setting
 - C:\Inetpub\wwwroot\ArcGIS\Services\web.config file

```
<?xml version="1.0" encoding="utf-8"?>
<configuration
   xmlns="http://schemas.microsoft.com/.NetConfiguration/v2.0">
<system.web>
   <httpRuntime maxRequestLength="20000"></httpRuntime>
</system.web>
```

- http://webhelp.esri.com/arcgisserver/9.3/dotNet/index.htm#commo n_problems.htm
- http://support.esri.com/index.cfm?fa=knowledgebase.techarticles.articleShow&d=35971

Server Tuning: Timeouts

There are 3 Timeouts to be aware of:

-Client Wait Timeout

```
C:\Inetpub\wwwroot\ArcGIS
<system.web>
<httpRuntime executionTimeout="600" />
</system.web>
```

- -ArcGIS Server Wait Timeout
- ArcGIS Server Execution Timeout
- If you are using synchronous execution with lots of users, you may need to increase the wait timeouts.

Troubleshooting

- Publishing fails if these errors are detected
 - -Check path to the toolbox or map document
 - Check parameter data types
 - Need to rework the tool to limit the parameter types
 - -Check of invalid sub-layers in the tool layer
 - Usually means the output data used to create the tool layer has been deleted or not visible to the map server.
- Most common problems
 - Tool data paths not to the scratch workspace
 - -Tool layer and sub-layer (parameter name) are the same.

Troubleshooting

- The tool will be run by the ArcGISSOC account which may be different than the login you used to author the tool with.
- Make sure the ArcGISSOC account has access to all the input data.
- Make sure the ArcGISSOC account has access to other software used by the service
 - -e.g. When using a custom .Net tool make sure the dll is usable by the ArcGISSOC account
- Debug by logging in as ArcGISSOC
 - Run in ArcMap if ArcGIS Desktop is installed on the server machine
 - Run with a python script if ArcGIS Desktop is not installed

Troubleshooting Debugging

- Check the log files if you are getting errors
 - Via manager or on disk (ArcGIS\server\user\log)
- Debugging
 - -Change to Asynchronous
 - -Turn Messages On
 - -Run and check Job Directory
 - See "Messages.xml"
 - See intermediate and output data

Performance Logging

- Info:Standard (Info2): Record elapsed time for all service methods.
- Info:Detailed (Info3): Record elapsed time for key sub processes.

2008-02- 08T13:40:45	INFO2	Population GPServer	GPServer Execute	Binary request received. Request size is 39434 bytes.	mb8	2240		100003
2008-02- 08T13:40:45	INFO3	Population GPServerSync	GPServerSync.Load.summarizePopulation	Load job j5c26f564c33640ffb6adae2df3cba23e message type Binary message size 39435	mb8	2324	0.10153	20023
2008-02- 08T13:40:46	INFO3	Population GPServerSync		Execute job j5c26f564c33640ffb6adae2df3cba23e	mb8	2324	0.93816	20022
2008-02- 08T13:40:46	INFO3	Population GPServerSync	GPServerSync.Save.summarizePopulation	Save job j5c26f564c33640ffb6adae2df3cba23e message type Binary message size 1964	mb8	2324	0.00549	20024
2008-02- 08T13:40:46	INFO2	Population GPServer	GPServer Execute	Binary request successfully processed. Response size is 1963 bytes.	mb8	2240	1.06580	100004

Load and Scaling

- Rule of Thumb: One Instance per CPU/Core
 - -More CPUs means you can have more instances
 - -More instances means more throughput
 - More throughput means more concurrent users
- Without added resources (CPUs), added instances do not necessarily add throughput.
- Average response time
- = (((users/socs) + 1) / 2) * execution time

Load and Scaling – Graphs for increasing User Load

Transactions / sec

Average Transaction Time

User Load

Server-side Execution time

API Result Options

- Format
 - -ESRI
 - Record set for features and tables
 - Tif for raster
 - -KML
 - KML for features and rasters
- Embedded data or URL
 - -Rasters and files can be returned as URL
- Spatial Reference
 - -If the web client is drawing the results on a map control, need to request the results in the spatial reference of the map control.

