
Geometric NetworksGeometric Networks
for Developersfor Developersfor Developersfor Developers

Craig GillgrassCraig Gillgrass
Alan HatakeyamaAlan Hatakeyama

OverviewOverview

•• Brief review of geometric networksBrief review of geometric networks
•• Creating geometric networksCreating geometric networks
•• Adding connectivity rulesAdding connectivity rules
•• Creating and modifying network featuresCreating and modifying network features
•• Performing analysis on a geometric networkPerforming analysis on a geometric network
•• Creating a custom trace taskCreating a custom trace task
•• Traversing a geometric networkTraversing a geometric network•• Traversing a geometric networkTraversing a geometric network
•• QuestionsQuestions

Geometric NetworksGeometric Networks

• Used to model network systems
– Primarily designed for Utilities/Natural Resources industries

• Connectivity relationships between feature classes.
– Can associate connectivity rules with the network.
– Connectivity is based on geometric coincidence always livealways liveConnectivity is based on geometric coincidence, always live.always live.
– Live within a Feature Dataset

• Each feature class has a role in the network
– A network may have multiple feature classes in the same role.

Geometric Networks …

• A geometric network is associated with a logical
network.

Each network feature is associated with one or more elements– Each network feature is associated with one or more elements
in the logical network.

• Trace solvers on the logical network provide
– Connectivity tracing, cycle detection, flow directions
– Upstream/downstream tracing, Isolation tracing

D t TDownstream Trace

Creating Geometric NetworksCreating Geometric Networks
How to create geometric networks within the geodatabaseHow to create geometric networks within the geodatabase

•• Use INetworkLoader for creation of geometric networksUse INetworkLoader for creation of geometric networks
–– Specify the input parameters for the geometric networkSpecify the input parameters for the geometric network
–– Use the LoadNetwork method to create the geometric network Use the LoadNetwork method to create the geometric network

according to the specified parametersaccording to the specified parameters
•• Parameters of note include:Parameters of note include:

–– Network nameNetwork name
–– Enabled and AncillaryRole fieldEnabled and AncillaryRole field
–– Snapping and Snap tolerance Snapping and Snap tolerance

•• Uses the Tolerance for the Feature DatasetUses the Tolerance for the Feature Dataset
–– Adding feature classesAdding feature classes

•• Check if they are supported; INetworkLoader2::CanUseFeatureClassCheck if they are supported; INetworkLoader2::CanUseFeatureClass
–– Adding weights and weight associationsAdding weights and weight associations

•• Fields must preFields must pre--existexist
–– After building the networkAfter building the network

•• Check for existence of build errorsCheck for existence of build errors

DemoDemo

•• Create a Geometric NetworkCreate a Geometric Network

Connectivity RulesConnectivity Rules

•• Allow you to constrain permissible connectivityAllow you to constrain permissible connectivityy p yy p y
––By default, any edge to any junctionBy default, any edge to any junction

•• If any rule is specified, they must all be specifiedIf any rule is specified, they must all be specified
––Remember to include orphan junctionsRemember to include orphan junctions

•• EdgeEdge--Junction ruleJunction rule
––edge A may be connected to junction Bedge A may be connected to junction Bedge A may be connected to junction Bedge A may be connected to junction B
––may have a default junction type (endpoint)may have a default junction type (endpoint)

•• EdgeEdge--Edge RuleEdge Rule
––edge A may be connected to edge B via junction Cedge A may be connected to edge B via junction C
––supports a default junctionsupports a default junction
––edgeedge--junction rules created as a side effectjunction rules created as a side effectgg jj

DemoDemo

•• Add Connectivity RulesAdd Connectivity Rulesyy

Creating Network FeaturesCreating Network Features
Basic process to create featureBasic process to create feature

•• CreateFeatureCreateFeature
•• If subtypes present, set IRowSubtypes::SubtypeCodeIf subtypes present, set IRowSubtypes::SubtypeCode
•• Call IRowSubtypes::InitDefaultValuesCall IRowSubtypes::InitDefaultValues

––Enabled, Ancillary Roles will be handled Enabled, Ancillary Roles will be handled
•• Set attribute valuesSet attribute values

Create geometr and set ShapeCreate geometr and set Shape•• Create geometry and set ShapeCreate geometry and set Shape
•• Call StoreCall Store

––Writes the values to the record in the tableWrites the values to the record in the table

Creating Network Features …Creating Network Features …

•• Geometric Network features are classified as complex featuresGeometric Network features are classified as complex features
–– Do not support non versioned editsDo not support non versioned edits
–– Must be edited with an Edit Session and Edit OperationMust be edited with an Edit Session and Edit Operation

•• Geometric Network specific behavior is handled by the Geometric Geometric Network specific behavior is handled by the Geometric p yp y
Network at creation timeNetwork at creation time

–– Not required to call ConnectNot required to call Connect
–– Not required create any logical network connectivity; ie: Not required create any logical network connectivity; ie: q y g y;q y g y;

CreateNetworkElements methodCreateNetworkElements method
–– Enabled and AncillaryRole values are set by the featureEnabled and AncillaryRole values are set by the feature

•• Not required to call Disconnect and Connect with spatial updates Not required to call Disconnect and Connect with spatial updates q p pq p p
to features; geometric network will ensure integrityto features; geometric network will ensure integrity

–– Unless, you want to edit the feature geometry without impacting Unless, you want to edit the feature geometry without impacting
connected featuresconnected features

Creating Network Features …Creating Network Features …

•• CursorsCursors
–– Insert cursors can perform direct inserts outside of an edit Insert cursors can perform direct inserts outside of an edit

session on simple datasession on simple data
•• Same rule applies to update cursorsSame rule applies to update cursorsSame rule applies to update cursorsSame rule applies to update cursors
•• Offers performance advantages; i.e.: events not firedOffers performance advantages; i.e.: events not fired

––Using these APIs on network features negates any performance Using these APIs on network features negates any performance
advantagesadvantagesadvantagesadvantages

•• Why?Why?
––All geometric network behavior is observedAll geometric network behavior is observed

Demo Outline

Demo Outline

DemoDemo

•• Create network featuresCreate network features

Performing analysis onPerforming analysis on
a geometric networka geometric networka geometric networka geometric network

The TraceFlowSolver objectThe TraceFlowSolver object

•• Performs basic analyses on a geometric networkPerforms basic analyses on a geometric networky gy g
––Same analyses as trace tasks on Utility Network Analyst toolbarSame analyses as trace tasks on Utility Network Analyst toolbar

•• InputsInputs
––FlagsFlags
––WeightsWeights
––RestrictionsRestrictions

•• Returns the set of network elements tracedReturns the set of network elements traced

•• Found in the esriNetworkAnalysis libraryFound in the esriNetworkAnalysis library

TraceFlowSolver object methods

Trace task on the
Utility Network Analyst toolbar

Method on the
TraceFlowSolver objecty y j

Find Common Ancestors FindCommonAncestors()

Find Loops FindCircuits()p ()

Find Path FindPath()

Find Path Upstream FindSource()Find Path Upstream FindSource()

Find Upstream Accumulation FindAccumulation()

Find Disconnected FindFlowUnreachedElements()Find Disconnected FindFlowUnreachedElements()

Find Connected
Trace Downstream

FindFlowElements()
FindFlowEndElements()

Trace Upstream
FindFlowEndElements()

Performing analysis on a geometric networkPerforming analysis on a geometric network

•• 1. Setting up the TraceFlowSolver object1. Setting up the TraceFlowSolver objectg p jg p j
•• 2. Specifying flags2. Specifying flags
•• 3. Solving an analysis3. Solving an analysis
•• 4. Extracting the results4. Extracting the results

1. Setting up the TraceFlowSolver object1. Setting up the TraceFlowSolver object

'Create the TraceFlowSolver objectj

Dim pTFS As ITraceFlowSolverGEN

Set pTFS = New TraceFlowSolver

'Specify the network to analyze

Dim pNetSolver As INetSolverDim pNetSolver As INetSolver

Set pNetSolver = pTFS

Set pNetSolver.SourceNetwork = pGeomNet.Network

'...

1. Setting up the TraceFlowSolver object 1. Setting up the TraceFlowSolver object
…continued…continued

'Specify the weights to usep y g

Dim pSolverWeights As INetSolverWeightsGEN

Set pSolverWeights = pTFS

Dim pNetSchema As INetSchemaDim pNetSchema As INetSchema

Set pNetSchema = pGeomNet.Network

Set pSolverWeights.FromToEdgeWeight = _

h i h (h)pNetSchema.WeightByName("Length")

Set pSolverWeights.ToFromEdgeWeight = _

pNetSchema.WeightByName("Length")

'Specify any restrictions

pNetSolver.DisableElementClass pRestrFC.FeatureClassIDp p

pTFS.TraceIndeterminateFlow = False

'...etc.

2. Specifying flags2. Specifying flags

'Create and populate an EdgeFlag object

Dim pNetFlag As INetFlag

Set pNetFlag = New EdgeFlag

pNetFlag.UserClassID = pFC.FeatureClassID

pNetFlag.UserID = pFeature.OID

pNetFlag.SubID = 0

Dim pEdgeFlag As IEdgeFlag

Set pEdgeFlag = pNetFlag

pEdgeFlag.Position = 0.5

'Pass the flag as an array to TraceFlowSolver object

Dim pEdgeFlagArray() As IEdgeFlag

ReDim pEdgeFlagArray(0 To 0)

Set pEdgeFlagArray(0) = pEdgeFlag

pTFS.PutEdgeOrigins pEdgeFlagArray

The SubIDThe SubID

•• Determines the specific network element of a given Determines the specific network element of a given p gp g
featurefeature

•• SubID = 0 for junction features and simple edge SubID = 0 for junction features and simple edge
f tf tfeaturesfeatures

•• SubID >= 0 for complex edge featuresSubID >= 0 for complex edge features

•• SubID values do NOT necessarily correspond to the SubID values do NOT necessarily correspond to the
ordering of edge elements within the featureordering of edge elements within the feature

•• SubID values are NOT necessarily consecutiveSubID values are NOT necessarily consecutive

Determining the SubID for a ComplexEdgeFeatureDetermining the SubID for a ComplexEdgeFeature

•• Look up the EIDLook up the EIDpp
–– IComplexNetworkFeature::FindEdgeEID(), orIComplexNetworkFeature::FindEdgeEID(), or
––Use the PointToEID objectUse the PointToEID object

•• Convert the EID to ClassID/ID/SubID triplet:Convert the EID to ClassID/ID/SubID triplet:
Dim pNetElements As INetElements

Set pNetElements = pGeomNet.Network

pNetElements.QueryIDs inputEID, esriETEdge, _

outputUserClassID, outputUserID, outputUserSubID

3. Solving an analysis3. Solving an analysis

'Create result enumerations

Dim pJunctions As IEnumNetEID

Dim pEdges As IEnumNetEID

Dim totalCost As Variant

'Perform an analysisPerform an analysis

pTFS.FindAccumulation esriFMDownstream, _

esriFEJunctionsAndEdges, _

pJunctions, pEdges, totalCost

The EIDHelper objectThe EIDHelper object

•• Looks up features and/or geometries from an Looks up features and/or geometries from an p gp g
enumeration of EIDsenumeration of EIDs

•• Geometries are returned in the specified Geometries are returned in the specified
OutputSpatialReferenceOutputSpatialReference

•• Can return only those features/geometries within theCan return only those features/geometries within the•• Can return only those features/geometries within the Can return only those features/geometries within the
given Envelopegiven Envelope

–– IEIDHelper::putref_DisplayEnvelope()IEIDHelper::putref_DisplayEnvelope()
•• Returns features with only those field values of interestReturns features with only those field values of interest

–– IEIDHelper::AddField()IEIDHelper::AddField()

4. Extracting the results4. Extracting the results

'Setup an EIDHelper objectp p j

Dim pEIDHelper As IEIDHelper

Set pEIDHelper = New EIDHelper

Set pEIDHelper.GeometricNetwork = pGeomNet

Set pEIDHelper.OutputSpatialReference = pSR

pEIDHelper.ReturnFeatures = TruepEIDHelper.ReturnFeatures True

pEIDHelper.ReturnGeometries = False

pEIDHelper.AddField "LinearRef_ID"

'...

4. Extracting the results 4. Extracting the results
…continued…continued

'Enumerate features in the results

Dim pEnumEIDInfo As IEnumEIDInfo

Set pEnumEIDInfo = _

pEIDHelper.CreateEnumEIDInfo(pEdges)

pEnumEIDInfo.Reset

Dim pEIDInfo As IEIDInfo, pFeature As IFeatureDim pEIDInfo As IEIDInfo, pFeature As IFeature

Set pEIDInfo = pEnumEIDInfo.Next

Do Until pEIDInfo Is Nothing

Set pFeature = pEIDInfo.Feature

Debug.Print pFeature.Value(iLinearRefFieldIndex)

Set pEIDInfo = pEnumEIDInfo NextSet pEIDInfo pEnumEIDInfo.Next

Loop

Creating aCreating a
custom trace taskcustom trace taskcustom trace taskcustom trace task

Creating a custom trace taskCreating a custom trace task

•• Create a DLL that implementsCreate a DLL that implementspp
–– ITraceTask andITraceTask and
–– ITraceTaskResultsITraceTaskResults

•• Register the DLL as an “ESRI Utility Network Task” in Register the DLL as an “ESRI Utility Network Task” in
the Component Category Managerthe Component Category Managerthe Component Category Managerthe Component Category Manager

––……\\ArcGISArcGIS\\BinBin\\Categories.exeCategories.exe

Methods to implementMethods to implement

•• ITraceTask::OnCreate()ITraceTask::OnCreate()()()
––Logic executed when the trace task is loaded into ArcMapLogic executed when the trace task is loaded into ArcMap

•• ITraceTask::get_Name()ITraceTask::get_Name()
––The name of the trace task as displayed in the Utility Network The name of the trace task as displayed in the Utility Network

Analyst toolbarAnalyst toolbar
•• ITraceTask::get_EnableSolve()ITraceTask::get_EnableSolve()g _ ()g _ ()

––Logic determining when the Solve button should be enabledLogic determining when the Solve button should be enabled
––Frequently executed Frequently executed –– should be lightweight codeshould be lightweight code

•• ITraceTask::OnTraceExecution()ITraceTask::OnTraceExecution()•• ITraceTask::OnTraceExecution()ITraceTask::OnTraceExecution()
––Logic executed when the Solve button is pressedLogic executed when the Solve button is pressed

•• ITraceTaskResults::get Result{Edges/Junctions}()ITraceTaskResults::get Result{Edges/Junctions}()g _ { g }()g _ { g }()
––Enumeration of network elements in the result setEnumeration of network elements in the result set

Accessing the Utility Network Analyst toolbar GUIAccessing the Utility Network Analyst toolbar GUI

•• All settings on the Utility Network Analyst toolbar can All settings on the Utility Network Analyst toolbar can g y yg y y
be accessed from the UtilityNetworkAnalysisExt objectbe accessed from the UtilityNetworkAnalysisExt object

––Useful for transferring user’s settings to TraceFlowSolver Useful for transferring user’s settings to TraceFlowSolver
objectobjectobjectobject

•• Found in the Found in the esriEditorExtesriEditorExt librarylibraryyy

•• A reference to the UtilityNetworkAnalysisExt object is A reference to the UtilityNetworkAnalysisExt object is
d i h lli IT T k O C ()d i h lli IT T k O C ()passed in when calling ITraceTask::OnCreate()passed in when calling ITraceTask::OnCreate()

Sample trace task:Sample trace task:
““New Upstream Trace TaskNew Upstream Trace Task””New Upstream Trace TaskNew Upstream Trace Task

Traversing aTraversing a
geometric networkgeometric networkgeometric networkgeometric network

The ForwardStar objectThe ForwardStar object

•• Given a network element, returns all adjacent network Given a network element, returns all adjacent network , j, j
elements and their weight valueselements and their weight values

•• Create by calling INetwork::CreateForwardStar()Create by calling INetwork::CreateForwardStar()
––Specify honorState = True to only return nonSpecify honorState = True to only return non--Disabled elementsDisabled elements

•• Usage:Usage:•• Usage:Usage:
––First call FindAdjacent() to determine the # of adjacent First call FindAdjacent() to determine the # of adjacent

elementselements
Th ll th Q () th d t f t h h dj t l tTh ll th Q () th d t f t h h dj t l t––Then call the Query…() methods to fetch each adjacent element Then call the Query…() methods to fetch each adjacent element
and its weight valueand its weight value

•• Found in the esriGeoDatabase libraryFound in the esriGeoDatabase library

ForwardStar ExampleForwardStar Example

'Get the network weights

Dim pNetSchema As INetSchema

Set pNetSchema = pGeomNet.NetworkSet p etSc e a pGeo et. et o

Dim pJuncWeight As INetWeight, pFTEdgeWeight As _

INetWeight, pTFEdgeWeight As INetWeight

Set pJuncWeight = pNetSchema WeightByName("JuncImpedance")Set pJuncWeight = pNetSchema.WeightByName("JuncImpedance")

Set pFTEdgeWeight =

pNetSchema.WeightByName("FTEdgeImpedance")

Set pTFEdgeWeight = _

pNetSchema.WeightByName("TFEdgeImpedance")

'Create ForwardStar object

Dim pFS As IForwardStarGEN

Set pFS = pGeomNet.Network.CreateForwardStar(True,Set pFS pGeomNet.Network.CreateForwardStar(True, _

pJuncWeight, pFTEdgeWeight, pTFEdgeWeight, Nothing)

'...

ForwardStar ExampleForwardStar Example
…continued…continued

Dim numAdjacencies As Long, i As Long

Do Until theEntireNetworkIsTraversed

'First determine number of adjacencies

pFS.FindAdjacent(incomingEdgeEID, _

currentJunctionEID numAdjacencies)currentJunctionEID, numAdjacencies)

'Then loop through the adjacent elements

For i = 0 To numAdjacencies - 1

pFS.QueryAdjacentEdge(i, adjEdgeEID, _

adjEdgeOrientation, adjEdgeWeight)

pFS.QueryAdjacentJunction(i, adjJunctionEID, _

adjJunctionWeight)

'...Do Something With Adjacency Information......Do Something With Adjacency Information...

Next i

Loop

Questions?Questions?

