Geometric Networks
for Developers

Craig Gillgrass
Alan Hatakeyama

i ESRI |




Overview

Please!

furm OFF cell phones
and paging devices

* Brief review of geometric networks
e Creating geometric networks
e Adding connectivity rules

e Creating and modifying network features

e Performing analysis on a geometric network
e Creating a custom trace task

e Traversing a geometric network

e Questions




Geometric Networks

 Used to model network systems
— Primarily designed for Utilities/Natural Resources industries

e Connectivity relationships between feature classes.
— Can associate connectivity rules with the network.
— Connectivity is based on geometric coincidence, always live.
— Live within a Feature Dataset

e Each feature class has arole in the network
— A network may have multiple feature classes in the same role.

I

Water services (Lines}

%
-"'-,
'a.l'.'" I.
Waber junetion fittings (Points)
Hharr Coquip W | Vakoe Type
nE.a7 14 - LUIFS Coppar




Geometric Networks ...

A geometric network is associated with a logical
network.

— Each network feature is associated with one or more elements
In the logical network.

* Trace solvers on the logical network provide
— Connectivity tracing, cycle detection, flow directions
— Upstream/downstream tracing, Isolation tracing

Wabier Mains Edge Tabla

Downstream Trace

Sarvice Taps >
e |

e




Creating Geometric Networks
How to create geometric networks within the geodatabase

» Use INetworkLoader for creation of geometric networks
— Specify the input parameters for the geometric network
—Use the LoadNetwork method to create the geometric network
according to the specified parameters
 Parameters of note include:
— Network name
— Enabled and AncillaryRole field
—Snapping and Snap tolerance
e Uses the Tolerance for the Feature Dataset
— Adding feature classes
 Check if they are supported; INetworkLoader2::CanUseFeatureClass
—Adding weights and weight associations
* Fields must pre-exist
— After building the network
» Check for existence of build errors




e Create a Geometric Network




Connectivity Rules

e Allow you to constrain permissible connectivity
—By default, any edge to any junction

o If any rule is specified, they must all be specified
—Remember to include orphan junctions

 Edge-Junction rule
—edge A may be connected to junction B
—may have a default junction type (endpoint)
e Edge-Edge Rule
—edge A may be connected to edge B via junction C
—supports a default junction
—edge-junction rules created as a side effect




 Add Connectivity Rules




Creating Network Features
Basic process to create feature

e CreateFeature
o If subtypes present, set IRowSubtypes::SubtypeCode

e Call IRowSubtypes::InitDefaultValues
—Enabled, Ancillary Roles will be handled

e Set attribute values
* Create geometry and set Shape

e Call Store
—Writes the values to the record in the table




Creating Network Features ...

 Geometric Network features are classified as complex features
— Do not support non versioned edits
— Must be edited with an Edit Session and Edit Operation
 Geometric Network specific behavior is handled by the Geometric
Network at creation time
— Not required to call Connect

— Not required create any logical network connectivity; ie:
CreateNetworkElements method

— Enabled and AncillaryRole values are set by the feature
* Not required to call Disconnect and Connect with spatial updates
to features; geometric network will ensure integrity

—Unless, you want to edit the feature geometry without impacting
connected features




Creating Network Features ...

e CUrsors

—Insert cursors can perform direct inserts outside of an edit
session on simple data

« Same rule applies to update cursors
» Offers performance advantages; i.e.: events not fired

—Using these APIs on network features negates any performance
advantages

 Why?
—All geometric network behavior is observed




Demo Outline

302054




Demo Outline

302034




e Create network features




Performing analysis on
a geometric network




The TraceFlowSolver object

e Performs basic analyses on a geometric network

—Same analyses as trace tasks on Utility Network Analyst toolbar
e Inputs

—Flags

—Weights

—Restrictions

e Returns the set of network elements traced

 Found in the esriNetworkAnalysis library




TraceFlowSolver object methods

Trace task on the
Utility Network Analyst toolbar

Find Common Ancestors

Method on the
TraceFlowSolver object

FindCommonAncestors()

Find Loops

FindCircuits()

Find Path

FindPath()

Find Path Upstream

FindSource()

Find Upstream Accumulation

FindAccumulation()

Find Disconnected

FindFlowUnreachedElements()

Find Connected
Trace Downstream
Trace Upstream

FindFlowElements()
FindFlowEndElements()




Performing analysis on a geometric network

« 1. Setting up the TraceFlowSolver object
« 2. Specifying flags

3. Solving an analysis

« 4. Extracting the results




1. Setting up the TraceFlowSolver object

"Create the TraceFlowSolver object
Dim pTFS As ITraceFlowSolverGEN
Set pTFS = New TraceFlowSolver

"Specifty the network to analyze
Dim pNetSolver As INetSolver

Set pNetSolver = pTFS
Set pNetSolver.SourceNetwork = pGeomNet.Network




1. Setting up the TraceFlowSolver object

...continued

"Specify the weights to use

Dim pSolverWeights As INetSolverWeightsGEN
Set pSolverWeights = pTFS

Dim pNetSchema As INetSchema

Set pNetSchema = pGeomNet.Network

Set pSolverWeights.FromToEdgeWeight = _
pNetSchema.WeightByName(*'Length™)

Set pSolverWeights.ToFromEdgeWeight = _
pNetSchema.WeightByName(*'Length™)

"Specify any restrictions
pNetSolver._DisableElementClass pRestrFC.FeatureClassliD
pTFS.TracelndeterminateFlow = False

"...etc.




2. Specifying flags

"Create and populate an EdgeFlag object
Dim pNetFlag As INetFlag

Set pNetFlag = New EdgeFlag
pNetFlag.UserClasslD = pFC.FeatureClasslID
pNetFlag.UserID = pFeature.OID
pNetFlag.SubID = O

Dim pEdgeFlag As IEdgeFlag

Set pEdgeFlag = pNetFlag
pEdgeFlag.Position = 0.5

"Pass the flag as an array to TraceFlowSolver object
Dim pEdgeFlagArray() As IEdgeFlag

ReDim pEdgeFlagArray(0O To 0)

Set pEdgeFlagArray(0) = pEdgeFlag
pTFS.PutEdgeOrigins pEdgeFlagArray




The SublID

e Determines the specific network element of a given
feature

e SubID = 0 for junction features and simple edge
features

 SubID >= 0 for complex edge features

e SublID values do NOT necessarily correspond to the
ordering of edge elements within the feature

» SublID values are NOT necessarily consecutive




Determining the SublID for a ComplexEdgeFeature

 Look up the EID

—IComplexNetworkFeature::FindEdgeEID(), or
—Use the PointToEID object

e Convert the EID to ClassID/ID/SublD triplet:

Dim pNetElements As INetElements

Set pNetElements = pGeomNet.Network

pNetElements.QuerylIDs 1nputEID, esriETEdge, _
outputUserClassID, outputUserlD, outputUserSublD




3. Solving an analysis

"Create result enumerations
Dim pJunctions As IEnumNetEID
Dim pEdges As IEnumNetEID

Dim totalCost As Variant

"Perform an analysis

pTFS.FindAccumulation esriFMDownstream,
esriFEJunctionsAndEdges,
pJunctions, pEdges, totalCost




The EIDHelper object

* Looks up features and/or geometries from an
enumeration of EIDs

« Geometries are returned in the specified

OutputSpatialReference

e Can return only those features/geometries within the
given Envelope
—|EIDHelper::putref _DisplayEnvelope()

* Returns features with only those field values of interest
—|EIDHelper::AddField()




4. Extracting the results

"Setup an EIDHelper object

Dim pEIDHelper As IEIDHelper

Set pEIDHelper = New EIDHelper

Set pEIDHelper.GeometricNetwork = pGeomNet
Set pEIDHelper.OutputSpatialReference = pSR
pEIDHelper._ReturnFeatures = True
pEIDHelper._ReturnGeometries = False
pEIDHelper _AddField "LinearRef ID"




4. Extracting the results

...continued

"Enumerate features 1In the results
Dim pEnumEIDINnfo As IEnumEIDINnfo
Set pEnumEIDInfo =

pEIDHelper.CreateEnumEIDInfo(pEdges)

pENumEIDINnfo.Reset
Dim pEIDInfo As IEIDInfo, pFeature As lFeature
Set pEIDInfo = pEnumEIDInfo.Next
Do Until pEIDInfo Is Nothing
Set pFeature = pEIDInfo.Feature
Debug.Print pFeature.Value(iLinearRefFieldlndex)
Set pEIDInfo = pEnumEIDInfo.Next
Loop




Creating a
custom trace task

Utility Network Analyst




Creating a custom trace task

e Create a DLL that implements
—|TraceTask and
—ITraceTaskResults

e Register the DLL as an “ESRI Utility Network Task” in
the Component Category Manager
—...\ArcGIS\Bin\Categories.exe




Methods to implement

e [ITraceTask::OnCreate()
—Logic executed when the trace task is loaded into ArcMap

o ITraceTask::get Name()

—The name of the trace task as displayed in the Utility Network
Analyst toolbar

o ITraceTask::get EnableSolve()
—Logic determining when the Solve button should be enabled
—Frequently executed — should be lightweight code

e ITraceTask::OnTraceExecution()
—Logic executed when the Solve button is pressed

e ITraceTaskResults::get Result{Edges/Junctions}()
—Enumeration of network elements in the result set




Accessing the Utility Network Analyst toolbar GUI

IUl:ilih_.r Metwork Analyst

 All settings on the Utility Network Analyst toolbar can
be accessed from the UtilityNetworkAnalysisExt object

—Useful for transferring user’s settings to TraceFlowSolver
object

 Found in the esriEditorExt library

* A reference to the UtilityNetworkAnalysisExt object is
passed in when calling ITraceTask::OnCreate()




Sample trace task:
“New Upstream Trace Task”




Traversing a
geometric network




The ForwardStar object

e Given a network element, returns all adjacent network
elements and their weight values

» Create by calling INetwork::CreateForwardStar()
—Specify honorState = True to only return non-Disabled elements
e Usage:

—First call FindAdjacent() to determine the # of adjacent
elements

—Then call the Query...() methods to fetch each adjacent element
and its weight value

 Found in the esriGeoDatabase library




ForwardStar Example

"Get the network weights

Dim pNetSchema As INetSchema

Set pNetSchema = pGeomNet.Network

Dim pJuncWeight As INetWeight, pFTEdgeWeight As

INetWeight, pTFEdgeWeight As INetWeight

Set pJuncWeight = pNetSchema.WeightByName(*'Junclmpedance')

Set pFTEdgeWeight =
pNetSchema.WeightByName(""FTEdge Impedance')

Set pTFEdgeWeight = _
pNetSchema.WeightByName (""TFEdge Impedance')

"Create ForwardStar object

Dim pFS As IForwardStarGEN

Set pFS = pGeomNet.Network.CreateForwardStar(True,
pJuncWeight, pFTEdgeWeight, pTFEdgeWeight, Nothing)




ForwardStar Example

...continued

Dim numAdjacencies As Long, 1 As Long
Do Until theEntireNetworklsTraversed
"First determine number of adjacencies
pFS.FindAdjacent(incomingEdgeEID, _
currentJunctionEID, numAdjacencies)

"Then loop through the adjacent elements

For 1 = 0 To numAdjacencies - 1
pFS.QueryAdjacentEdge(i, adjEdgeEID,
adjEdgeOrientation, adjEdgeWeight)

pFS.QueryAdjacentJunction(i, adjJunctionEID,
adjJunctionWeight)
"...Do Something With Adjacency Information...
Next 1
Loop




Questions?




