
SOAP vs. REST:

Complements or Competitors?

David Chappell

Chappell & Associates

Web Services Today

 Two approaches to Web services exist today:

– SOAP and the WS-* specifications

– Representational State Transfer (REST)

 There is some competition between
proponents of each approach

 Yet both have value

– The challenge is to determine when to use each
one

Describing SOAP

Access via SOAP
Illustrating the approach

POST /AccountAccess/Accounts

Host: www.quickbank.com

…

<soap:Envelope …

<soap:Body>

<GetBalance …

<Account>2</Account>

</GetBalance>

</soap:Body>

</soap:Envelope>

Client Service

Account 1

Account 2

Account 3

Access via SOAP
A Windows Communication Foundation (WCF) interface

[ServiceContract]

interface IAccount

{

[OperationContract]

int GetBalance(int account);

[OperationContract]

int UpdateBalance(int account,

int amount);

}

Indicates that this interface
should be exposed as a

service

Indicates that this
method should be

exposed as a remotely
callable operation

Access via SOAP
Creating clients

 SOAP services are typically defined using the
Web Services Description Language (WSDL)

– This lets tools create client APIs

– Client developers see methods with parameters

Client Service
A
P
I

WSDL

Definition
Tool, e.g.,

Visual Studio

SOAP

Access via SOAP
Representing data

 SOAP typically represents information using
XML

 Pros:

– There’s one common, expressive format

 Cons:

– XML isn’t especially efficient

– XML isn’t a good fit for some languages

Describing WS-*
Messaging and security

 Messaging

– WS-Addressing: Allows using SOAP over protocols
other than HTTP

 Security

– WS-Security: Defines how to convey various
security tokens and more

– WS-Trust: Defines how to get security tokens

– WS-SecureConversation: Allows establishing a
security context

Describing WS-*
Reliability and transactions

 Reliability

– WS-ReliableMessaging: Allows reliable end-to-end
communication through SOAP intermediaries

 Transactions

– WS-AtomicTransaction, WS-Coordination: Define
how to do two-phase commit for ACID
transactions

Describing WS-*
Policy and metadata

 Policy

– WS-Policy: Allows defining policies in various
areas, e.g., security

 Acquiring interface definitions

– WS-MetadataExchange: Allows accessing a
service’s WSDL definition and more

WS-* in the Real World
Pragmatic issues

 SOAP/WS-* aren’t universally supported today

– For example, WCF isn’t (yet) the dominant
technology for Web services on Windows

 Cross-vendor interoperability for SOAP and
the WS-* technologies isn’t perfect

– Contract-first design can help

• But WSDL is hard to work with

Describing REST

Access via REST
Illustrating the approach

Service

GET www.quickbank.com/Accounts/2

Account 1

Account 2

Account 3

Client

Defining REST
An architectural style

 Two core principles

– Everything is accessed through a uniform interface

• GET, PUT, POST, DELETE, …

– All resources are identified with a URI

 Some subsidiary principles

– Be cacheable whenever possible

– Be stateless whenever possible

– More . . .

Truth In Naming
An aside

 Calling SOAP-based services “Web services”
makes no sense

– SOAP has little to do with Web technologies

 REST-based services truly deserve the name
“Web services”

– They’re entirely based on HTTP and URIs

Access via REST
A WCF interface

[ServiceContract]

interface IAccount

{

[OperationContract]

[WebGet]

int GetBalance(string account);

[OperationContract]

[WebInvoke]

int UpdateBalance(string account,

int amount);

}

Sends request
using HTTP GET

Sends request using
HTTP POST (by default)

The Semantics of HTTP Verbs
A closer look

 The semantics of GET, PUT, and DELETE are
well-defined

 The semantics of POST are less clear

– From the HTTP 1.1 spec:

POST is designed to allow a uniform method to cover the following functions:
- Annotation of existing resources;
- Posting a message to a bulletin board, newsgroup,

mailing list, or similar group of articles;
- Providing a block of data, such as the result of

submitting a form, to a data-handling process;
- Extending a database through an append operation.

The actual function performed by the POST method is determined by the server ...

Access via REST
Creating clients

 There is no standard definition language for
defining RESTful interfaces

 Option 1: Clients write raw HTTP calls

 Option 2: A RESTful service provides a client
library

– Clients see methods with parameters

Service

HTTP

Client

Service

HTTP

Client
A
P
I

Access via REST
Representing data

 REST defines no standard data representation
– A RESTful service can use XML, JavaScript Object

Notation (JSON), and other formats

 Pros:
– Data formats can better match clients

• Such as using JSON with JavaScript clients

– Different formats can be chosen to match
different performance requirements

 Cons:
– Options increase complexity

REST in the Real World
Pragmatic issues

 No formal way to describe a service interface
means more dependence on written
documentation

 Client issues

– Most developers don’t like writing raw HTTP calls

– But providing a client library requires:

• Choosing what languages and programming
environments to support

• Dealing with versioning

Comparing SOAP and REST:

Making the Right Choice

Areas For Comparison

 Exposing operations vs. exposing resources

– SOAP/WS-* and REST emphasize different things

 Capabilities

– SOAP/WS-* and REST provide different functions

Resources vs. Operations
What is exposed?

 REST

– Focused on accessing named resources

• Each of which typically represents some data

– Every application exposes its resources through
the same interface

 SOAP

– Focused on accessing named operations

• Each of which typically implements some logic

– Different applications expose different interfaces

RESTful Data Access
Example: Amazon’s Simple Storage Service (S3)

 S3 allows storing Objects in Buckets

– Similar to storing files in directories

 Example operations:

– GET Object: Returns the contents of this object

– GET Bucket: Returns a list of objects in this bucket

– PUT Object: Creates a new object

– PUT Bucket: Creates a new bucket

– DELETE Object: Deletes an object

– DELETE Bucket: Deletes a bucket

RESTful Data Access
The benefits of caching

 For many (most?) services, the majority of
client requests are reads

– In a RESTful service, all reads rely on HTTP GET

 The results of a GET are commonly cached

– This can allow better performance and more
scalability for RESTful services exposed over the
Internet

SOAP-Based Operation Access
Example: The banking interface shown earlier

 A service for banking functions might include
operations such as
– GetBalance(Account)

– UpdateBalance(Account, Amount)

 These work well with either REST or SOAP

 Suppose the interface also includes
– Transfer(FromAccount, ToAccount, Amount)

 This maps naturally to a SOAP operation

– It doesn’t map as well to REST’s resource-oriented
model

Acquiring interface definitions WS-MetadataExchange No standard

Defining policy WS-Policy, et al. No standard

Supporting distributed ACID
transactions

WS-AtomicTransaction,
WS-Coordination

No standard

Providing end-to-end reliability WS-ReliableMessaging No standard

Establishing a security context WS-SecureConversation SSL

Acquiring security tokens WS-Trust No standard

Conveying security tokens WS-Security HTTP, SSL

Data formats XML XML, JSON, others

Language for describing
interfaces

WSDL No standard

Transport protocol HTTP, TCP, others HTTP

Protocol for invoking operations SOAP HTTP

SOAP/WS-* and REST
A capability summary

SOAP/WS-* REST

Broad Standardization vs. YAGNI
Two views of the world

 Broad standardization

– Provides a wide range of capabilities

– Increases the odds of correct implementation,
since vendors implement the capabilities

– Allows interoperability, since everyone provides
the capabilities in the same way

 YAGNI

– You Ain’t Gonna Need It, so keep things simple

Security
REST

 RESTful services commonly use SSL

 Standards for carrying security tokens:

– HTTP for username/password

– SSL for X.509 certificates

 This is sufficient for many scenarios

– Such as point-to-point Internet communications

Security
SOAP/WS-*

 SOAP-based services can use SSL

 SOAP-based services can also use WS-Security,
which provides:

– Support for identity through SOAP intermediaries

• Not just point-to-point

– Broader standards for carrying security tokens

– A standard way to provide data integrity and data
privacy

Transactions
Using WS-AtomicTransaction

 ACID transactions that span multiple
applications are important in enterprise
computing

– ACID transactions don’t usually make sense across
the Internet

 WS-AtomicTransaction addresses this problem

– It relies on WS-Coordination

Transactions
A simplified WS-AtomicTransaction example

Java EE

Browser

1) Submit
request

3) Invoke operation via SOAP,
conveying transaction context as

defined by WS-Coordination

.NET Framework

2) Update .NET
Application

4) UpdateEJB
Application

Internet

Transaction
Coordinator

5) Perform two-phase commit as
defined by WS-Atomic Transaction

Transaction
Coordinator

5) Perform two-phase commit as
defined by WS-Atomic Transaction

Reliability

 REST

– Assumes the application deals with
communication failures via application retries

 SOAP with WS-ReliableMessaging

– Builds acknowledgement/retry logic into the
communications stack

– Can provide end-to-end reliability through one or
more SOAP intermediaries

Reliability
The challenge of idempotency

 An operation is idempotent if invoking it once
has the same effect as invoking it more than
once

– Example: A GET that reads an account balance

 POST might not be idempotent

– Example: A POST that transfers money between
bank accounts

 There’s no guaranteed reliability in HTTP

– What does a RESTful client do when a POST fails?

A Case Study: ArcGIS
The evolution of exposed services

 Circa 2003: SOAP only

– No WS-*

 Circa 2006: SOAP and REST

– The SOAP interfaces provided greater functionality

 Moving forward: An emphasis on REST

– With the SOAP and REST interfaces offering equal
functionality

– Both are documented and can be accessed
directly

ArcGIS
Why change?

 REST is simpler

– ArcGIS doesn’t need everything SOAP/WS-*
provides

 REST has better performance and scalability

– SOAP-based reads can’t be cached, for instance

 REST allows better support for browser clients

– Because it allows diverse formats, e.g., JSON

ESRI Customer Code

JavaScript
Library

Silverlight
Library*

ArcGIS
Client libraries for RESTful access from a browser

GIS Data

ArcGIS
Server

Browser

REST

Flex
Library*

* Also supports SOAP

ESRI Customer Code

JavaServer Faces
Library

ASP.NET
Library

ArcGIS
Client libraries for SOAP access from a server

GIS Data

ArcGIS
Server

Server

SOAP

Browser

Making A Choice
SOAP/WS-* or REST?

 Neither is right for every situation

– Each has its place

 Some questions to ask:

– Does the service expose data or logic?

• REST can be a good choice for exposing data

• SOAP/WS-* might be better for exposing logic

– Does the service need the capabilities of WS-*, or
is a simpler RESTful approach sufficient?

– What’s best for the developers who will build
clients for the service?

Conclusion

 In a service-oriented world, how services are
exposed is important

 Both SOAP/WS-* and REST have good futures

– There’s good support for both approaches in .NET,
Java EE, and other frameworks

– And in ArcGIS

 The best decisions come from reason,
not emotion

About the Speaker

David Chappell is Principal of Chappell & Associates
(www.davidchappell.com) in San Francisco, California. Through
his speaking, writing, and consulting, he helps people around the
world understand, use, and make better decisions about new
technology. David has been the keynote speaker for many events
and conferences on five continents, and his seminars have been
attended by tens of thousands of IT decision makers, architects,
and developers in forty countries. His books have been published
in a dozen languages and used regularly in courses at MIT, ETH
Zurich, and other universities. In his consulting practice, he has
helped clients such as Hewlett-Packard, IBM, Microsoft, Stanford
University, and Target Corporation adopt new technologies,
market new products, train their sales staffs, and create business
plans. Earlier in his career, David wrote networking software,
chaired a U.S. national standards working group, and played
keyboards with the Peabody-award-winning Children’s Radio
Theater. He holds a B.S. in Economics and an M.S. in Computer
Science, both from the University of Wisconsin-Madison.

Copyright © 2009 David Chappell

Chappell & Associates

www.davidchappell.comSOAP/WS-*

