Creating, managing and utilizing a 3D Virtual City in ArcGIS 10.1

Tamrat Belayneh (tbelayneh@esri.com)
Eric Wittner (ewittner@esri.com)
Contents

• 3D Mapping & Ingredients of a 3D Virtual City
• Creating 3D Datasets with ArcGIS 10.1
• Analysis in 3D
• 3D Rendering APIs
• Publishing 3D data to the cloud
• Developer solutions for 3D Virtual City GIS
• Questions and Answers…
What is 3D Mapping?

- Viewing & Analysis of spatial data in 3D: raster, vector, elevation
- Seamless transitions between global, local and street-level scale data
- Performing GIS analysis within a 3D context
What can 3D Mapping do for you?

• Accurately represent real-world GIS entities
• Create realistic 3D virtual cities
• Visualize ‘what if’ scenarios
• Gain insights into your data, including:
 – 3D spatial relationships
 – Sizes / Scales
 – Visual Sensitivity (LOS, Skyline, Shadows)
Esri’s Solution for 3D Mapping & Visualization

• Desktop:
 – ArcGIS 3D Analyst (ArcGlobe and ArcScene)
 – ArcGIS City Engine (new at 10.1)
 – ArcReader / ArcGIS Explorer (available at no cost)

• ArcGIS Engine Solutions:
 – Globe Control
 – Scene Control

• ArcGIS Server Solution:
 – Globe Server
 – Allows analysts to publish rich GIS web Services
 – No programming required
Creating 3D Data Sets

- **Data Collection**
- **Data Conversion**
- **Data Authoring**
 - Out of the Box (using GUI)
 - **Symbology**
 - 3D Marker Symbols
 - Style Gallery
 - Using 3D Graphics
 - Extruding 2D datasets – Attribute Driven
 - Custom Solutions
 - Develop 3D objects using *multipatches*
 - MultiPatch Geometry
Data Collection

Types of Data
- Elevation
- Imagery
- BIM/IFC
- Models/Multipatches

Across Scales
- Facility
- City
- Regional / Global

Subsurface
- Topographic
- LIDAR
- Points and lines
Data Conversion: Import 3D Files

- Input Formats
 - 3D Studio Max
 - VRML
 - GeoVRML
 - SketchUp 6.0
 - OpenFlight
 - COLLADA

These formats can store geographic location.
Data Conversion: Layer 3D to Feature Class

- 3D Symbology
- Extrusion Settings
- Texture Downsampling
Data Authoring – Procedural Techniques

- **CityEngine**
 - A platform for authoring rules capable of generating a variety of 3D Data.
 - 3D Content from scratch, or driven by GIS data

- Types of output:
 - Buildings
 - Floors
 - Streets
 - Vegetation
 - Street Furniture
 - Cars
 - Pedestrians
Authoring – 3D Symbology

• Points
 – 3D Geometric primitives
 – 3D Models: Street furniture, etc.
 – 3D Character Markers
 – 3D Billboarded Markers

• Lines
 – 3D Texture Line Symbols
 – 3D Geometric primitives

• Polygons
 – 3D Texture Fill Symbols

• Multipatches
Authoring: Adding Visualization elements

• UI based
 - 3D Graphics Toolbar
 - Digitize a point, line, polygons and text graphics
 - Apply 3D Symbology to the graphic elements
 - KML support

• Code Based –
 3D Graphics
 Layer API
Authoring: 3D Templates

Provides a guide for how to author a 3D City

- **Includes:**
 - Globe document
 - Layers with pre-design symbology
 - Example data for exploration
 - Documentation

Search key word:

“3D Virtual City: Philadelphia”

- Additional data management, authoring and analysis templates available
3D Data Management and Analysis

• Managing LIDAR Data
 - LAS Datasets
 - Classification tools

• Shadow maps on the earth’s surface:
 - Skyline and Skyline Barrier
 - Intersect 3D

• Cumulative Line of Sight, using:
 - Construct Site Lines
 - Line of Sight
 - 3D Spatial Join
 And many more …
Demonstration 1 & 2
Creating and Analyzing 3D Virtual Cities
3D Rendering APIs

- GlobeGraphics API
 - GraphicsLayer
 - GraphicsElement

- Customization API
 - Application Customization
 - Support for CustomGlobe Layer

- OpenGL API
 - Globe framework provides mechanism to plug-in OpenGL calls

- 3D Solutions Engineering
 - Write your own App
3D Graphics Layer API Usage (C++)

//Create a new graphics layer
m_ipGlobeGraphicsLayer.CreateInstance(CLSID_GlobeGraphicsLayer);
ILayerPtr (m_ipGlobeGraphicsLayer)->put_Name(L"3DGraphicsLayer");

//Add the new graphic layer to the globe
IGlobePtr ipGlobe;
m_ipGlobeDisplay->get_Globe(&ipGlobe);
IScenePtr (ipGlobe)->AddLayer(ILayerPtr(m_ipGlobeGraphicsLayer),
 VARIANT_TRUE);

//Activate the new graphics layer
IScenePtr (ipGlobe)->
 >ActiveGraphicsLayer(ILayerPtr(m_ipGlobeGraphicsLayer));

//Create the element’s geometry
IPointPtr ipPoint(CLSID_Point);
IZAwarePtr (ipPoint)->put_ZAware(VARIANT_TRUE);
ipPoint->PutCoords(position.longitude, position.latitude);
ipPoint->put_Z(position.altitude);
3D Graphics Layer API Usage (C++)

```cpp
//Create the element’s color (red)
IRgbColorPtr ipColor(CLSID_RgbColor);
ipColor->put_Red(255L);
ipColor->put_Green(0L);
ipColor->put_Blue(0L);

//Set the element’s symbol
IMarkerSymbolPtr ipMarkerSymbol(CLSID_SimpleMarker3DSymbol);
ISimpleMarker3DSymbolPtr (ipMarkerSymbol)->put_Style(esriS3DMSSphere);
ISimpleMarker3DSymbolPtr (ipMarkerSymbol)->put_ResolutionQuality(1.0);
ipMarkerSymbol->put_Size(700.0);
ipMarkerSymbol->put_Color(IColorPtr(ipColor));

//Create the new marker symbol element
IElementPtr ipTrackElement(CLSID_MarkerElement);
IMarkerElementPtr (ipTrackElement)->put_Symbol(ipMarkerSymbol);
ipTrackElement->put_Geometry(IGeometryPtr(ipPoint));

//Add the graphic element to the graphics layer
IGraphicsContainerPtr(m_ipGlobeGraphicsLayer)->AddElement(ipTrackElement);
```
Serving the 3D View: ArcGIS Server

- Publish the ArcGlobe document as a GlobeService
- Supports Web-based access
- All ArcGlobe supported data types can be served
- Supports Identify and Searching of features
- Animation is also supported
Serving the 3D View: Sharing at ArcGIS 10.1
Demonstration 3

Consuming 3D content and performing analysis in the cloud
Demonstration 4

write your own 3D app