Insight into the Utility Network

Erik Hoel and Tom Brown
Utility network
New network framework to support utility and telco solutions

Vision:

• Provide utility customers with the ability to model, edit, and analyze complex networks of facility infrastructure using all Esri platform clients

• Enable key modeling concepts to better support a true representation of what is on the ground, while fostering an easy exchange of network information with other mission critical systems
Utility network project

Key differentiators

- Cross platform support
- Services based architecture
- Updated network model
 - Connectivity associations
 - Containment associations
 - Structural attachments
 - Multiple terminals
 - Expanded tracing framework
 - Built in support for network diagrams
 - Validation framework
 - Basic source management
 - Export capabilities

- Updated transaction model
 - Based on change tracking model
 - More flexible, less overhead
- Attribute rule framework
 - Cross platform scripting capabilities
 - Scripts execute as features are updated
- Enhanced editing experience
 - Expanded feature template model
 - Snapping based on connectivity rules
- Composite map and subtype layers
- Central storage of maps and projects
Utility network
Building a better framework

• Improved framework from Esri makes for a better overall solution for your organization
Utility network
One or more domain networks

- Conceptually, the utility network is composed of a structure network and one or more domain networks
 - Each domain has a collection of networks (e.g., in electric domain: transmission, distribution, and structural; the gas and water domains could also include cathodic protection)
 - An organization determines which of the networks is relevant for their business (e.g., some will not manage or maintain transmission, only distribution, or vice versa)
Demo

Utility network model
Connectivity associations

- Utility networks support connectivity based on x, y, and z coincidence
 - In addition, non-coincident features can also be connected

- Connectivity associations are used to model connectivity between two devices that are not necessarily geometrically coincident

- Connectivity associations are defined between two point features or between a line end and a terminal
 - Connectivity rules limit what can be connected
Containment associations

- Containment is used to model the association between devices and structures where the device is “contained” in the structure
 - E.g., a valve inside a pump station
- Only structures and assemblies can be containers
 - Devices cannot be containers, only content
 - Devices that are containers defined in data model
- Structures and assemblies can also be content
 - Lots of things can reside in a pump station or substation
- Containment associations can be supported on point, line, and polygon features
Structural attachment associations

- Structural attachment associations are used to model the associations between devices and above ground structures where the device is “attached” to the structure
 - e.g., a transformer on a power pole
 - Allows users to report all structures associated with a subnetwork

- Structural attachment capabilities are specified at the asset type level
 - An asset type can only support either structural attachments or containment; it cannot support both
 - Structural attachment rules are used to constrain what may be attached to what
Terminals

- A terminal represents a connection point on a device
- Terminals support more realistic modeling of devices
 - Important for CIM as well as sophisticated analytics without data extraction
- Terminals are defined for certain devices; not all devices need to support terminals
 - Devices that serve as subnetwork controllers (sources or sinks)
 - Devices that require a high and low side for analytic purposes (e.g., transformers)
 - Devices whose traversal is asymmetric (e.g., network protector or a check valve)
 - Devices that require valences larger than two
Terminals

- Bypass switches are used to either energize or de-energize a device.
- When the device is de-energized, it can safely be serviced or removed.
- Valid paths (enabled edges):
 - normal: edge 2, edge 5
 - bypass: edge 1
- Domains are used to constrain valid paths.
Terminals

Complex valves – dual flow 4 port diverter

• Another complex example from the water network domain

• With a dual flow 4 port diverter valve, A can be connected to B in parallel with C to D, or A can be connected to D in parallel with B to C

• Valid paths (enabled edges):
 - AB-CD: edge 1, edge 6
 - AD-BC: edge 3, edge 5
Subnetwork management

- Subnetworks are connected subportions of the network that are used for:
 - Driving analysis operations
 - Labeling/annotation, map making
 - Assigning units of work
 - Visualization (circuit map)
 - Exporting portions of the network

- Subnetworks correspond to circuits in electric, and pressure zone in gas or water
 - Structure networks do not have subnetworks
Demo
Subnetwork management
Tracing

- Tracing is exposed in Pro as commands, as a GP tool, through the managed SDK, and as REST endpoints in the Utility Network Analyst service.
 - Pro will come with basic preconfigured tools in the gallery.
 - Business Partners and users can modify the gallery, adding and removing preconfigured tools.
Network diagrams

- Integrated mechanism for utility network users to work with diagrams
- Comes with pre-configured schematic diagramming capabilities
- Default diagramming capabilities can be expanded to create simplified/enriched diagrams
Network diagrams

• Comes with a collection of layout algorithms to lay out diagrams content

• Users can control diagram persistence

• Diagram owners can control access rights on persisted diagrams

• Partners extend with custom layout routines
Demo

Analysis and diagrams
Validation of network topology

- Validation of data in the utility network is similar to topology validation.

- The utility network information model will facilitate the specification of connectivity, containment, and attachment rules as part of the data model.

- When features violate the specified rules, error features are created.

- The user experience for discovery and inspection of errors is similar to ArcGIS Topology:
 - Errors will be persisted in system maintained error tables at the workspace level.
 - These error tables will be shared across the system.
Transaction model

• Uses a new versioning model implementation
 • User experience is the same as with the current versioning model

• Three primary workflows will be supported:
 • High isolation (long transactions) when connected through Feature Service
 • Disconnected local editing (ArcGIS Pro or Runtime based apps) using Feature Services and Sync
 • Short transaction connected to the Feature and Utility Analyst services

• Benefits of the new versioning model:
 • No need to reconcile/compress nightly
 • Performance – well performing and scalable database queries
 • Temporal properties – history capabilities built-in, parallel posting, and future support for partial posting
Attribute rules

• Configurable Attribute Rules will be exposed for the purpose of automatically populating field values for features
 • E.g., \[\text{fieldA} = \text{fieldB} + ":\" \times \text{fieldC}\]

• Cross platform scripting language ensures updates applied regardless of where edit performed (desktop, mobile, web)

• Attribute rule types:
 - Calculation rules – expressions that are used to populate attributes based upon other attributes on a single feature or other related feature
 - Constraint rules – expressions that specify permissible attribute configurations on a feature; when the constraint is violated, an error is raised when storing the feature
 - Validation rules – expressions that are checked during a batch validation process; applied when a feature is created, updated, or deleted
Editing

- Snapping based on defined connectivity rules
- Preset Template option for repeatable configurations
 - Automatic defining of containment, connectivity, and structural attachment associations during feature creation
- Storage of feature templates in the data source (e.g., the Geodatabase catalog)
 - Storage of template’s definition (Group and Preset)
 - Storage of access requirements across the platform
Service-based architecture

- Extensions to existing services:
 - Feature Service

- New services:
 - Utility Network Service
 - Network Diagram Service
 - Version Management Service
Network management

Partners continue to complete the solution

• Partners continue to extend and complete the solution
 • Partner solutions deliver: Design, Analytics, Analysis, Integration, Productivity, etc.

• Solution can be extended in different ways
 • Configurations, custom tools (desktop), services (including interceptors), custom applications (mobile and web), etc.
Network management
Moving to the utility network

- Partners continue to play key role in completing solution and assisting users in moving forward
- Esri provided data models
- Sample geoprocessing models and scripts to load your data
Continuing the growth of the platform

- **Device**
 - View, Query
 - Simple Design/Inspections
 - Tracing

- **Desktop**
 - Design, Maintenance
 - Analysis, Modeling
 - Map Authoring

- **Portal**
 - Utility Network Transaction Model
 - Editing Tools
 - Attribute Rules

- **Web**
 - Simple Editing, QA/QC
 - Tracing
 - Executive Dashboards

- **Server**
 - Online Content and Services
Utility network
Building a better framework

- Improved framework from Esri makes for a better overall solution for your organization
Timeframes
Subject to change – current plans

• Beta 1 – April 2017
 - Pro 1.4, ArcGIS 10.5

• Beta 2 – June 2017
 - Pro 2.0, ArcGIS 10.5.1

• PreRelease – September 2017
 - Pro 2.1 (beta), ArcGIS 10.6 (beta)

• Final – before end of 2017
Q & A

Please provide your feedback