ArcGIS Runtime: Analysis

Lucas Danzinger
Mark Baird
Mike Branscomb
ArcGIS Runtime session tracks at DevSummit 2018

• ArcGIS Runtime SDKs share a common core, architecture and design

• Functional sessions promote common capabilities and workflows
 - An Introduction to the API and Architecture
 - Working with Your Portal
 - Building Great User Experiences
 - Working with Maps Online and Offline
 - Editing Your Data Online and Offline
 - Integrating Imagery
 - Analysis
 - Building 3D Applications

• Product sessions promote specific development experiences

• Demo theaters highlight examples of specific technical capabilities

Shared workflows, any platform, any device

ArcGIS Runtime

<table>
<thead>
<tr>
<th>.NET</th>
<th>Qt</th>
<th>Java</th>
<th>Android</th>
<th>iOS</th>
<th>macOS</th>
</tr>
</thead>
</table>

Shared workflows, any platform, any device
Agenda

- Geometry operations
- Geoprocessing
- Visual Analysis
- Summary & Roadmap
Geometry Operations
Mark Baird
Geometry Engine

- Available on all Runtime SDKs
- Class with static methods for… Geometry
- Geometry can be points, lines or polygons.
- Found in features and graphics
- Client side processing

3 groups of functions
- Geometry dimension questions
- Geometry spatial questions
- Building new geometries
Geometry dimension questions

- How long is this line?
- What is the area of this polygon?
- What is the boundary of this polygon?
- What is the distance between A and B?

Java sample

```java
// get planar distance between 2 points
double planarDistance = GeometryEngine.distanceBetween(pointA, pointB);
```

General information:
- Results are in the unit of the spatial reference of the geometry
- All geometries must be in the same spatial reference.
Projecting between spatial references

• Project method.
• Convert from Web Mercator into a local coordinate system.

Java sample

```
// create a OSGB point from a Web Mercator point
Point reprojectedGeometry = (Point) GeometryEngine.project(point, OSGB);
```

• Transformation used to project is chosen for you, but you can specify your own.
Answer spatial questions about geometries

• Contains
• Crosses
• Intersects
• Nearest vertex
• Overlaps
• Touches
• Within

Java sample

```java
// does line cross polygon?
if (GeometryEngine.crosses(polyline, polygon)) {
    // color it green to say yes
    fillSymbol.setColor(0xFFF000FF);
} else {
    // color it red to say no
    fillSymbol.setColor(0xFFFF0000);
}
```
Create geometries based on geometries

- Buffer
- Union
- Intersects
- Difference
Plus many more…

- Label point

GeometryEngine.labelPoint(myPoly)
Geoprocessing
Mike Branscomb
Geoprocessing: Overview

• Framework and tools for processing spatial data
 - Spatial analysis e.g. Buffer, Intersect, Viewshed…
 - Data management e.g. Create Feature Class, Add Field, Add Domain…
• >1200 built-in tools installed with ArcGIS Desktop
• Can be combined into custom tools/workflows
 - Model Builder
 - Python scripts
• Published to ArcGIS Enterprise as services
• Provides REST endpoint for service execution
• ArcGIS Runtime executes geoprocessing tools via services
• Services are designed in ArcGIS Desktop
Geoprocessing: Framework

• ArcGIS tools
• Custom tools
Geoprocessing: Services

• Must run tool in ArcGIS Desktop before publishing
 - Validates inputs, processing and outputs
• Publish result to ArcGIS Enterprise
 - Result includes input data, output data, project data
• Runtime API provides types to represent geoprocessing service (task) and specific requests to run (jobs)
• Build parameter objects, send to service, wait for results
• Process output parameters
 - e.g. features, tables, raster datasets, values
Geoprocessing: Local Services

- ArcGIS Runtime Local Server includes subset of tools
 - Approx. 300 tools (data management, analysis, extensions)
- Result must be packaged
 - Geoprocessing Package (.gpk)
- Package includes all data required for execution of tool as a service
 - Input data, project data, output data
- LocalServer API includes administration
 - e.g. LocalGeoprocessingService.StartAsync(ServiceType.Asynchronous)
Publishing Geoprocessing services

- Model Builder
- Python
- ArcGIS Server
- ArcGIS Runtime
- Local Server
Geoprocessing: Tips for building geoprocessing tools

- Keep input data and output data small
 - Determines size of the GPK or Service Definition
- Use local data to ArcGIS Server / LocalServer
- Write intermediate data to memory
- Add attribute and spatial indexes
- Avoid unnecessary coordinate transformations
- Reduce data size

Server Help > Performance Tips for Geoprocessing Services
Demo: Geoprocessing
Mike Branscomb
Visual Analysis

- Visually detect patterns, trends, outliers
- A form of discovery
- Vector and raster data
- 2D and 3D
Exploratory 3D Visual Analysis

- Available analyses:
 - Line of Sight
 - Viewshed
- Fast performance – GPU driven
- Results displayed on Scene, not persisted
 - *differs from traditional GeoProcessing
- Acts on current resolution of data
Exploratory 3D Visual Analysis

• Line of Sight
 - Determines the visible and not visible portions of an imaginary line between a target and an observer
 - Output is a line graphic where visible areas and obstructed areas have different colors
 - 2 varieties:
 - LocationLineOfSight - calculates against 2 points
 - GeoElementLineOfSight - calculates between 2 GeoElements
 - Can attach to 2 GeoElements to auto update
 - Events triggered when target is visible
Exploratory 3D Visual Analysis

- Line of Sight

```cpp
void LineOfSightLocation::createLineOfSight()
{
    // create the observer/target points
    const Point observerPt(-73.06958032962375, -49.253112971555446, 2000, SpatialReference::wgs84());
    const Point targetPt(-73.079266999709162, -49.300457676730559, 1312, SpatialReference::wgs84());

    // create the line of sight
    m_lineOfSight = new LocationLineOfSight(observerPt, targetPt, this);
    m_analysisOverlay->analyses()->append(m_lineOfSight);

    // configure the LoS color and width
    LineOfSight::setVisibleColor(QColor("cyan"));
    LineOfSight::setObstructedColor(QColor("magenta"));
    LineOfSight::setLineWidth(2.0f);
}
```
Exploratory 3D Visual Analysis

- **Viewshed**
 - Determines the visible and not visible portions of a surface based on an observer point
 - Output is a raster where visible areas and obstructed areas have different colors
 - 3 varieties:
 - LocationViewshed (Camera)
 - LocationViewshed (Point)
 - GeoElementViewshed (attach to a GeoElement)
Exploratory 3D Visual Analysis

- Viewshed

```cpp
void ViewshedLocation::createViewshed(double x, double y)
{
    const Point pt = m_sceneView->screenToBaseSurface(x, y);

    // Create the Location Viewshed
    m_locationViewshed = new LocationViewshed(pt, m_heading, m_pitch,
                                              m_horizontalAngle, m_verticalAngle,
                                              m_minDistance, m_maxDistance, this);

    m_locationViewshed->setVisible(m_viewshedVisible);

    // Add the Viewshed to the Analysis Overlay
    m_analysisOverlay->analyses() -> append(m_locationViewshed);
}
```
Visualizing vector data

• Apply symbols based on rules
 - Feature attribute data values
• Unique Value Renderer
 - Different symbol per unique attribute value
 - Ex: A state’s favorite sports team
• Class Breaks Renderer
 - Different symbol per range of attribute values
 - Ex: Median income
• Smart Mapping Renderers
 - More and more being added to Runtime
Visualizing raster data

- Hillshade renderer
- Blend renderer
- Stretch renderer
- RGB renderer
- Colormap renderer
Summary

- ArcGIS Runtime enables spatial analysis in your native apps
- Common to combine approaches
 - Geometry Engine > Geoprocessing > Visualization
- Local to the device
 - Offline workflows
- In your enterprise or the cloud
 - Online service-based workflows
Roadmap for analysis in ArcGIS Runtime 100.x (Dev Summit 2017)

- Geoprocessing additional tools for Local Server
- Renderers and additional support for smart mapping
- 3D on-the-fly visual analysis e.g. viewshed, line of sight
- Network analysis:
 - Closest Facility (online and offline)
 - Service Area (online and offline)
Roadmap for analysis in ArcGIS Runtime

- Geoprocessing additional tools for Local Server
- More 3D exploratory analysis tools e.g. 3D distance
- Local Server support for ArcGIS Pro packages
- Local Server support for ArcMap 10.6 packages
Thank you

Questions?