

USI NG GIS TO MAP AND MEASURE ACCESSIBI LITY I N SWEDISH CITIES

J OHAN SVENSSON

Research project

- Main project started in 2003.
- Financed by The Swedish Transport Administration
- Study of variations in spatial distribution of accessibility within cities for users with different needs and abilities
- Special focus on accessibility for children, elderly and impaired citizens
- All modes of transport

Study area

Town	Urban population	Pedestrian network (kilometres)
Helsingborg	86872	758
Umeå	70844	608
Luleå	57560	430
Falun	35950	271
Trelleborg	24848	202
Alingsås	22232	200
Nynäshamn	13294	101
Säffle	9222	113

Method

Using GIS to map \& measure accessibility

Network analyses - using detailed multimodal networks \ddagger realistic distances and travel times

Accessibility with regard to variations in individual capacity and ability

Calculating accessibility from every home to various destinations

GIS-model

- Pedestrian and bicycle network based on a field survey \ddagger digital model with attributes
- Model of the public transport system - with bus stops, routes, timetables etc.
- Demographic data on real estate coordinate
- Destinations - grocery stores, pharmacy, health care, public transport etc.

Accessibility analysis

- Accessibility to public transport
- Safe walking to school
- Evaluating barriers
- Analysis of bottlenecks
- Accessibility for citizens with impairments
- Using different speed of mobility for different users, incl. bicyclists
- Realistic measures of time and distances

Example: Evaluating barriers

关

 HELSINGBORG
Ättekulla

Directness to local destination

Directness calculated as walking distance/euclidean distance

Average directness quota in Attekulla: 1,51

RAMBCLL

Directness quota

	< 1,1
	1,1-1,25
	1,25-1,5
\square	1.5 - 1.75
\square	1,75-2.0
\square	2.0-2.5
\square	2,5-3,0
	3,0-3,5
	3,5-4,0
	> 4,0

\therefore Shortest route by foot

Before:

Average directness
quota: 1,51

Example: Evaluating barriers

HELSINGBORG

Ättekulla

Directness to local destination

Directness calculated as walking distance/euclidean distance

Average directness quota in
Åttekulla: 1,29
RAMBCLL
Directness quota
$\square<1,1$

\square| $1,1-1,25$ |
| :--- |
| $1,25-1,5$ |
| \square |
| $1,5-1,75$ |
| \square |
| $1,75 \cdot 2.0$ |
| \square |
| $2.0-2.5$ |
| \square |
| $2,5-3,0$ |
| $3,0-3,5$ |
| $3,5-4,0$ |
| $>4,0$ |

Shortest route by foot

0

Accessibility for citizens with

 impairmentsThe design of the built environment decides its usability

- Design of pathways (width, slope, pavement)
- Visual and tactile contrasts,
- Design of stairs and ramps, obstacles,
- Lights and vegetation,
- Street crossings (width of road, tactile information, contrasts, refuge islands, signals - lights and sound)

I dentify usable parts of the networks

Evaluating the design of the built environment.

Using criteria for usability different criteria for children, blind, mobility impaired.

Pathways usable for wheelchair users

Other pathways

Usable parts of the pedestrian network

Network analysis

Distance to nearest reachable destination via usable pathways to public transport and grocery stores.

65+ able to walk/wheel to a bus stop (no. of persons) Distance (m)

- $0-100$
- 101-200
- 201-300
- 301-400
- 401.500
- 501 - 1772
- $65+$ without access to a bus stop (no. of persons)
- Bus stop

Network usable for wheelchair usersPedestrian network
Buildings
Streets

Accessibility to Public Transport (Bus Stop)

RAMBCLL CHALMERS

Neighbourhood classification

RAMBCLL

Observations

SCAFT-areas

- extensive networks of continuous pathways \ddagger usable outdoor environment for mobility impaired
- Combined bicycle paths usually lack separation between cyclists and pedestrians \ddagger less suitable for blind or severely vision impaired
- Relatively few live close to a bus stop or grocery store

Observations

Central and Semi-central Areas

- Sidewalks in a grid network.
- High frequency of street crossings
- More space designated for pedestrians only \ddagger more suitable for blind or severely vision impaired
- High density and large supply of services \ddagger short distances and several options if one is unreachable

Observations

Areas with single family houses

- Lower density \ddagger longer distances and less supply of services
- Bus routes outside areas.
- Often no sidewalks and local streets assumed not to be walkable for the impaired
- Lack of continuous pedestrian network
- No or few street crossings

Accessibility to public transport (bus stop). Individual range limited to $\mathbf{3 0 0}$ metres

Some conclusions

- The design of the urban environment tends to be less constraining for citizens with mobility impairments, than for severely vision impaired or blind citizens.
- Accessibility depends upon access to motorized transport \ddagger importance of usable and accessible public transport
- Accessibility for the impaired at a higher level in more densely populated towns
- Significant differences between different types of neighbourhoods
- Some differences in level of accessibility between areas of same types within a city - due to topography, relative location, supply of public transport, homogeneity, but also not identical design)

THANK YOU

MORE INFORMATI ON:

johan.svensson@ramboll.se

