Improving acquisition efficiency by managing and modelling seismic interference

Renaud Laurain¹, Francisco Ruiz-Lopez², Seija Eidsvig¹

¹ Statoil ASA; ² Geograf AS
Motivation

- Interference: all coherent noise affecting the seismic data
 - Concurrent acquisitions
 - Supply boats
 - Activity on the field (trenching, piling)
 - Platform noise

- Cost savings
 - 8 to 10% of the acquisition time has historically been spent on timeshare on NCS

- Increase our ability to complete the acquisition programme
 - North Sea season is short and the area busy
 - Extensive acquisition programme
 - Spawning and fishery activities
Principles of SI removal

- Two critical parameters
 - Dip of the SI arrival on the shot record
 - Consistency from shot to shot

- The amplitude of the SI is not a limiting parameter anymore

- Acquisition should not be aborted because of SI
Main questions

• Q1: Given the position of a vessel receiving the SI, which are the positions of the interference source(s) that can be handled?

• Q2: Given the position of the interference source, what part of the seismic line of the receiving vessel is affected by SI and to which extent can it be handled?

• Q3: Given the acquisition layout and planning, can the processing algorithms filter the SI?

• The required functionalities for the analysis have been implemented in ArcMap in a series of 3 different scripts according to their purpose.
Tools workflow
Dip calculation

Case 1:
Wavefront *comes from ahead*
\[t_{1+\Delta t_1} \gg t_1 \]

Case 2:
Wavefront *comes from abeam*
\[t_{2+\Delta t_2} \approx t_2 \]

Case 3:
Wavefront *comes from astern*
\[t_{3+\Delta t_3} \ll t_3 \]
SI modelling

• Tool1: Given the position of a vessel receiving the SI, **where the other vessels could work without interfere our acquisition?**

 - acquisition areas (polygon)
 - receiving streamer (polyline)

• We can acquire in B if we modify slightly the direction
SI modelling

• Tool 2: Given the lines and the interference source locations, how the interference sources influence the acquisition along the preplot line?
 - Preplot lines (polyline)
 - Interference sources (point)

• We can only acquire one line without being disturbed
SI modelling

• Tool 3: Given an acquisition layout and the relative displacements between entities, **would the filtering algorithms be able to clean all the received SI?**

Vessel A (I. Source)

V. A

Oil platform (I. Source)

Oil P.

Vessel B (Recording seismic)

V. B

Rec.
Single interference result

- Example: 8km length streamer & Recording intervals of 5s. [Direct arrival]
Interference matrix

V. A
Oil P.
V. B
Rec.

Str front-end
Str tail-end

Platform interference

Recording time

Str front-end
Str tail-end

Vessel B interference
Combining interferences [Consistency modelling]

- Example: 8km length streamer & Recording intervals of 5s.
SI modelling

• Tool 3: Given an acquisition layout and the relative displacements between entities, **would the processing algorithms be able to clean all the received SI?**

 - Preplot line (polyline)

 - Interference sources (polyline)
Tampen Area in 2014

• 10 competing surveys
 – Statoil: Statfjord, Gulfaks, Snorre PRM, Oseberg, Oseberg SWIM, Veslefrikk
 – Brage (Wintershall), Alwyn (TOTAL)
 – Multi Client: CGG Horda

• Veslefrikk 4D
 – Challenging survey as in the middle of the area
 – SI from Oseberg SWIM, Oseberg, Brage and CGG Horda
Example: Veslefrikk 2014

- Acquisition by Polarcus Asima
- Interference from Oseberg SWIM
- Shooting directions are such that the interference is difficult to remove
Veslefrikk – QC display before SI removal
Veslefrikk - Modelling

• Modeling exercise in ArcGIS
 – For each survey we need the acquisition parameters
• Model the dip and the arrival time of the SI arrival
• Estimate the consistency from shot to shot
Veslefrikk – QC display before SI removal
Veslefrikk – QC display after SI removal
Veslefrikk – shots before SI removal
Veslefrikk – shots after SI removal
Cost saving – streamer seismic on NCS

- 10% of line acquisition time used for SI prior to 2012
- Down to 2% in 2014
- Cost
 - Estimated saving in 2013: 4 MUSD
 - Estimated saving in 2014: 12 MUSD
Way forward

• Include **more geophysics** (amplitude decay, ...)

• Seismic community
 - **Communicate** to the other players (oil companies and contractors)
 - Update the regulations for **timeshare**

• Implement **realtime processing with live feed data** from vessels

• **Improve the output** of scripts using generalization (to polygon and to line).
 - Easier to handle
 - More representative

• Make the script able to work with **more complex geometries** (sections of great circles, geodetic lines, etc.)

• Develop it using **ArcObjects**
 - Event handling
 - Interactivity and easy-of-use
Improving acquisition efficiency by managing and modelling seismic interference

Renaud Laurain
Geophysicist
relau@statoil.com
Tel: +4795180572
www.statoil.com

Francisco Ruiz-Lopez
Geodesy engineer
flo@statoil.com
Tel: +4798198883
www.geograf.no