

Traffic Bottleneck Analysis and Real-Time Traffic Services
ESRI European Congress 2014 October, 2014

Jeroen Brouwer

Congestion is a global problem

Top 3 - Decreasing congestion

The worst 20 cities in 2013

Rank	Cl change	City	Country	Congestion	Morning peak	Evening peak	Highways	Non-Highways
1	V	Moscow	Russia	74\%	111\%	141\%	79\%	72\%
2	A	Istanbul	Turkey	62\%	87\%	129\%	73\%	54\%
3	---	Palermo	Italy	39\%	60\%	64\%	29\%	45\%
4	V	Warsaw	Poland	39\%	71\%	75\%	37\%	41\%
5	V	Rome	Italy	37\%	71\%	64\%	26\%	41\%
6	V	Dublin	Ireland	35\%	74\%	71\%	27\%	42\%
7	V	Marseille	France	35\%	60\%	70\%	20\%	41\%
8	---	Paris	France	35\%	65\%	65\%	35\%	35\%
9	A	London	United Kingdom	34\%	60\%	63\%	22\%	40\%
10	V	Athens	Greece	34\%	54\%	49\%	14\%	40\%
11	A	Brussels	Belgium	34\%	73\%	77\%	31\%	36\%
12	---	Stockholm	Sweden	30\%	59\%	66\%	27\%	33\%
13	V	Stuttgart	Germany	29\%	49\%	60\%	28\%	31\%
14	---	Naples	Italy	28\%	43\%	50\%	13\%	40\%
15	V	Hamburg	Germany	28\%	45\%	49\%	22\%	32\%
16	---	Vienna	Austria	28\%	44\%	50\%	18\%	33\%
17	A	Prague	Czech Republic	28\%	57\%	48\%	22\%	31\%
18	V	Berlin	Germany	27\%	42\%	49\%	24\%	30\%
19	---	Milan	Italy	27\%	62\%	52\%	17\%	33\%
20	A	Lyon	France	27\%	55\%	53\%	22\%	31\%

Traffic Bottleneck Analysis

Floating Car Data provides new opportunities

Example Speed Analysis for Amsterdam

Example Congestion Analysis for Amsterdam

Example Congestion Analysis for Amsterdam

Analysis Example Italy

Case Study Citilabs - SPEA

Where: A14 Bologna S.Lazzaro - Castel S.Pietro
Castel S.Pietro - Imola
Imola - Dir.Ravenna
When: 2012, October \#1
2012, August, 15 \#2
What: SPEA - vehicular data of vehicle types: cars, motorcycles, caravan, trucks under 3,5 tons, collected by Tutor portals
TomTom - vehicular data collected by millions of TomTom navigation device, mainly from In car Dash Navigation

Purpose: compare data provided by SPEA and data derived from TomTom Floating car Data. This in order check the validity of Floating Car Data

V\&B SOFTWARE CITILABS TOMTOM迷 SERVICES Ltd
 business partner

V\&B SOFTWARE

 SERVICES Ltd CITILABS TOMTOM*business partner

The data is compared for a specific segment. Speed data from the Ground Loops (Vel. CI. A) are compared with Floating Car Data (TomTom)

Central time zone of the day is highlighted in yellow, from 06:00 to 21:00

V\&B SOFTWARE sERVICES Ltd

CITILABS TOMTOM*
business partner

Non-Loop analysis number 1
Approach to the Bologna San Lazzaro toll booth (dir. Bologna)

V\&B SOFTWARE SERVICES Ltd
 CITILABS TOMTOM*
 business partner

Selection of segments of interest from TomTom shapefile

V\&B SOFTWARE CITILABS TOMTOM垙
 SERVICES Ltd business partner

Analysis of TomTom average speed data in the approach, the transit and in the way out from of the toll booth

Non-Loop analysis number 2
Approach to the Ravenna Barrier toll booth (dir. Ravenna)

Analysis of a situation on interest \#2 approach to the Ravenna barrier (dir. Ravenna, 2012 August 15)

V\&B SOFTWARE SERVICES Ltd
 CITILABS TOMTOM*
 business partner

Selection of segments of interest from TomTom shapefile

V\&B SOFTWARE

 SERVICES Ltd
CITILABS TOMTOM*
 business partner

Analysis of TomTom average speed data in the approach, the transit and in the way out from of the toll booth

Real-Time Traffic Services

Real Time Probe Data

Traffic Incidents and Traffic Flow

File contains information ONLY for the road stretches affected by incident/congestion

Accurate delay, start and end location

O Current speed information on all relevant roads - both congested and freeflow

Easy GIS integration

The 4 steps in accurate routing

4. TomTom Traffic
3. Speed Profiles
2. Map Share
1. Base maps

4. TomTom Traffic
3. Speed Profiles
2. Map Share

1. Base maps

2. TomTom Traffic
3. Speed Profiles
4. Map Share
5. Base maps

Example: Driving to Frankfurt at 9AM Friday

Example: Driving to Frankfurt at 5PM Friday

Smart Planning

Travel Time: 62 minutes
Distance: 50.0 km

Smart Planning

Travel Time: 58 minutes
Distance: 51.1 km

Travel Time Isochrones (Service Areas)

TOMTOM

Congestion Impact

Normal accessibility Area Accessible within 10 minutes of Origin Point

Exceptional accessibility 17:00 on a Friday Area Accessible within 10 minutes of Origin Point

Questions?

