Integrating Open Source Statistics Packages with ArcGIS

Brett Rose
Our site's users

Subscribers to Martha Stewart Living

Consumers of furry pornography

The business implications are clear.

Pet Peeve #208:
Geographic profile maps which are basically just population maps
Why are we here?

Why open source statistics?
You’ve asked us

Substantive Interest

Quantitative minds

Mythological choice
Spatial analytics can mean a lot of thing
With spatial analysis we will map to see possible patterns, describe to improve understanding, and measure to minimize subjectivity.
Tools in ArcGIS
Spatial Analyst

This is map algebra
outRas = Raster("inraster1") + Raster("inraster2")
Geostatistics
Spatial Statistics
Continuing with spatial analytics
Spatial Analyst
Spatial & Geo Stats

Data Access Module

Spatial Statistics Data Object and Utilities

python NumPy

matplotlib
Two kinds of “integration”
 Numeric/Scientific python modules
 Here: https://wiki.python.org/moin/NumericAndScientific

50+ Modules

Check compatibility
Not direct

• Alternative languages
• No python hooks
• Incompatible
• Python servers as active script and OS
• Out of process
got it

Now what
pysal

- Open Source Python Library for Spatial Analytical Functions
- ASU GeoDa Center for Geospatial Analysis and Computation
- Luc Anselin
 - PySpace (<GeoDaSpace>)
- Sergio Rey
 - STARS

BSD License
Collaborative Advantages:

PySAL and **ArcGIS**

- Advance Spatial Analysis code base with novel functions
 - E.g. Regionalization, Spatial Econometrics
 - Do not have to “reinvent the wheel”
 - Experience

- GIS User Interface ~800 GP Tools
- Easy-to-use Script Tool Framework
 - Enriched functionalities from ArcGIS arcpy, SSDataObject, SSUtilities, SSReport etc.
 - Multiple input/output data format
 - Error messages
 - Pyharness framework for robust testing
SSDataObject
SSUtilities

Input Data

Environment Settings
Projections
Field Qualification Z/M
Values Bad Records
Error/Warning Messages
Localization
Feature Accounting

Output Data

Spatial Weights
PySal Analytical Functions
NumPy

NumPy
ssdo = SSDO.SSDaDataObject(inputFile, templateFC=outputFC)

masterField = UTILS.setUniqueIDField(ssdo, weightsFile = weightsFile)
ssdo.obtainData(masterField, fields=allVarList)

depArray = ssdo.fields[dependVar].data
PySAL – ArcGIS Toolbox Demonstration: Regional Income Distributions
R

• R (The R Project for Statistical Computing)
 • Over 60 CRAN sites across 30+ countries
 • Its Free GNU GENERAL PUBLIC LICENSE
 • Base is powerful Statistics, Linear Algebra, Visualization , etc…
 • Its extendible 1800+ Contributed Extensions
 • splancs, spatstat, spdep,rgdal, maptools, shapefiles
Indirect Integration Model

• Python and R: “Decoupled”
 • Used as the core script tool
 • Hooks into the Operating System to call R
 • Post-Processor
 • “Out of Process”

• RPy/RPy2
 • Compatibility

• win32com
 • Windows only
 • Works for other programs as well
Python

Retrieves Parameters
Organizes into R command
Executes R command Post-Processing
Apply Symbology
Apply Projections Report
```python
inputFC = '***' + ARCPY.GetParameterAsText(0) + '***
outputFC = '***' + ARCPY.GetParameterAsText(1) + '***
numClusters = ARCPY.GetParameterAsText(2)
clusterMethod = ARCPY.GetParameterAsText(3)
### Create R Command ###
pyScript = SYS.argv[0]
toolDir = OS.path.dirname(pyScript)
rScript = OS.path.join(toolDir, "PointClusters.r")
rScript = '***' + rScript + '***
ARCPY.SetProgressor("default", "Executing R Script...")
args = "".join([inputFC, outputFC,
                 numClusters, clusterMethodStr,
                 varNames, useLocation])
RCMD = "R --slave --vanilla --args "
cmd = RCMD + args + " < " + rScript
```
R et al. → Output Data → Python → Enhanced Output Data

```python
### Execute Command ###
OS.system(cmd)

### Project the Data ###
DM.DefineProjection(outputFC.strip('""'), inputFC.strip('""'))

### Render the Results ###
params = ARCPY.gp.GetParameterInfo()
renderFile = OS.path.join(toolDir, "RenderClusters.lyr")
params[1].Symbology = renderFile
```
R – ArcGIS Toolbox Demonstration: Regional Income Distributions
• PySAL
 • Advanced spatial analytic techniques
 • Combined with SSDataObject and Utilities
 • Directly compatible
 • Python Harness Implementation
 • Spatial Econometrics and Spatial Weights Conversion
 • ESDA, Clustering, Spatial Dynamics etc.
 • -BSD
• **R**
 • Contains “cutting edge” data analysis techniques from a wide body of academic and applied fields
 • Extendible
 • Indirectly compatible
 • Direct via RPy/RPy2 and win32com
• GNU
• Revolution
• esri continues to focus on improving the interaction in the future
links

• pysal
 • https://geodacenter.asu.edu/pysal
 • https://github.com/pysal

• SciPy and NumPy
 • http://www.scipy.org/

• R
 • http://www.r-project.org
Try for yourself

https://github.com/Esri/gis-stat-analysis-py-tutor

http://esri.github.io/
“Essentially, all models are wrong, but some are useful.”

-George E. P. Box