Best Practices for Caching Maps and Vector Tile Layers

Tommy Fauvell
Topics

- Raster tiles and vector tiles
- Raster tiles: relevance and best practices
- Vector tiles: authoring, sharing, and styling
- Please hold all questions until the end
Introduction to raster and vector tiles
Raster Tiles

• What are Raster Tiles?
 - Pre-rendered snapshots

• Tiling Scheme:
 - Origin
 - Tile Dimension and Format
 - Extent
 - CRS
 - LOD’s

• Generate Cache
 - Cooking
Web GIS and Mobile Mapping

The times they are a changin’

• Technology is forcing us to evolve how we deliver content

• The landscape has changed
 - GPU and CPU
 - High resolution displays

• Devices and browsers are more capable of handling advanced graphics processing
Do we have to rasterize them?

• What if we could leverage the processing power of our mobile devices and advances in web browser technology?
 - Keep vector data as vector
 - Ask the device to take on the rendering load

• Vector tiles tilesets deliver layers of geometry and rendering instructions
 - Tiles
 - Styles
 - Sprites
 - Fonts
 - Index
Tile creation process: Esri basemaps

- **Entire world**
 - ~ 8hrs on a desktop machine
 - Tiles ~ 13 GB
 - Multiple styles can use the same tiles

- **Compared to raster for the entire world**
 - ~ many weeks on a server cluster per map style
 - Tiles ~ 20 TB
What do each of the tile formats look like?

- **Raster Tiles:**
 - .bundle
 - JPEG
 - PNG8, PNG24, PNG32
 - PNG
 - MIXED
 - LERC

- **Vector Tiles:**
 - Mapbox vector tile spec
 - Google’s protocol buffers
 - Mapbox gl style spec
 - .bundle
Authoring Clients / Generation Mechanics

- Raster Tiles:
 - MXD’s and Mosaic Datasets
 - ArcGIS Desktop
 - Manage Tile Cache
 - Package Tools
 - ArcGIS Pro
 - Manage Tile Cache
 - Create Map Tile Package
 - ArcGIS Server
 - Manage Map Server Cache Tiles

- Vector Tiles:
 - Map Projects
 - ArcGIS Pro v1.2+
 - Create Vector Tile Package
 - ArcGIS Pro v1.4*
 - Integrated sharing workflow
Use cases

• Raster Tiles:
 - Imagery Basemap
 - CADRG / ECRG (Scanned Maps)
 - Hillshade / Shaded Relief
 - 3D Terrain
 - StreetMap
 - Canvas Maps
 - Boundaries and Places
 - Transportation

• Vector Tiles:
 - StreetMap
 - Canvas Maps
 - Boundaries and Places
 - Transportation
To Summarize

<table>
<thead>
<tr>
<th></th>
<th>Raster Tiles</th>
<th>Vector Tiles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Imagery</td>
<td>✓</td>
<td>X</td>
</tr>
<tr>
<td>Projection</td>
<td>All Supported CRS</td>
<td>All Supported CRS</td>
</tr>
<tr>
<td>Updating AOI</td>
<td>✓</td>
<td>Road Ahead</td>
</tr>
<tr>
<td>Changing styles</td>
<td>X</td>
<td>✓</td>
</tr>
<tr>
<td>Tile format</td>
<td>JPEG, PNG, LERC</td>
<td>PBF</td>
</tr>
<tr>
<td>Tile consumption</td>
<td>ArcGIS Pro</td>
<td>ArcGIS Pro 1.3+</td>
</tr>
<tr>
<td></td>
<td>ArcGIS Desktop</td>
<td>Modern Browsers with WebGL support*</td>
</tr>
<tr>
<td></td>
<td>Runtime</td>
<td>Runtime (Quartz Beta2)</td>
</tr>
<tr>
<td></td>
<td>Web API's</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ArcGIS Earth</td>
<td></td>
</tr>
<tr>
<td>Authoring Clients</td>
<td>ArcGIS Pro</td>
<td>ArcGIS Pro 1.2+</td>
</tr>
<tr>
<td>Hosting Components</td>
<td>ArcGIS for Server</td>
<td>Portal for ArcGIS</td>
</tr>
<tr>
<td></td>
<td>Portal for ArcGIS</td>
<td>Portal for ArcGIS.com</td>
</tr>
<tr>
<td></td>
<td>ArcGIS.com</td>
<td>ArcGIS.com</td>
</tr>
<tr>
<td>Export Packages</td>
<td>✓</td>
<td>Road Ahead</td>
</tr>
</tbody>
</table>

Current Display Adaptor
Raster Tiles
Relevance and Best Practices
Are Raster Tiles still relevant?

Absolutely…

- Map Services
- Image Services
- Elevation Services
- 3D Terrain Services
Scalable
Tiles: JPEG 75 @ 256x256
Test: 1:147M – 1:9K
Continental U.S. AOI
2677 Bundles, 42,831,784 Tiles
Bare Metal Server:
Windows 2008R2 SP1
32 cores, 500GB hdd, 256GB RAM
1 – 16 servers (32 – 512 cores)
Optimize Your Data

• File Geodatabase:
 - Spatial Index
 - Compact
 - Compress
 - Attribute Index

• Location:
 - If you have room, replicate your data onto each ArcGIS Server machine

• Coordinate reference system:
 - On-the-fly vs reproject data

Cache smarter…not harder
Imagery Basemaps / Image Services

- Use JPEG or MIXED tile type
- FGDB and Mosaic Datasets local vs shared file server location
- Map or Image Service?
 - Fixed draw order
 - Complex cartographic treatments
- Build pyramids?
 - Time and storage
- Use footprints for cache extents
 - Dissolve footprints
 - Use higher resolution footprints to constrain cache at larger scales

Cache smarter…not harder
Imagery Basemaps / Image Services

- Prep Mosaic Datasets for caching:
 - Use the analyze tools
 - Spatial Index
 - Attribute Index (Mosaic Method fields)
 - Increase max number of rasters
 - Increase max number of rows / columns

Cache smarter…not harder
3D Terrain Image Services

- Use LERC
 - .1 compression
- CRS:
 - Web Mercator – 10.3.1+
 - GCS-WGS84 – 10.5
- Build overviews
- Use footprints for cache extents
 - Dissolve footprints
 - Use higher resolution footprints to constrain cache at larger scales
Map Documents / Map Service

• Use JPEG 90 or PNG
 - JPEG for large color variation
 - PNG with canvas maps / reference maps
• Annotations / Dynamic Labeling
• Scale Dependencies and Group Layers
• Value-based renderers and attribute indices
• Map Publishing analyzer
ArcGIS Server

- Don’t use Fine, Verbose, or Debug logging.
- Size your Caching Tools Instances:
 - \(N = \# \text{ of cores per machine} \)
 - Min and Max = \(N \)
 - \(2 \to 4 \text{GB of RAM} \times N \)
 - Decrease \(N \) if necessary
ArcGIS Server

- Size your Cache Controllers Instances:
 - Based on the number of simultaneous jobs you plan to run, ensure you have enough max instances.
Cache Jobs

- Only cache what is necessary
- Use AOI’s with decreasing coverage as you increase LOD’s
- Break your basemap project into multiple cache jobs by bracketing LOD’s
 - Each job can / should have a unique AOI
- Only update what has changed
 - You don’t need to re-cache everything if you have partial updates to your data
Best Practices for Raster Tiles

• ArcGIS Server scales / leverages system resources

• Optimize your data:
 - spatial and attribute indices, compact and compress FGDB, local data

• Configure ArcGIS Server Caching instances

• Optimize MXD and Imagery Projects:
 - analyzer results, scale dependencies, Maplex when needed, Mosaic Dataset tuning

• Optimize cache jobs:
 - AOI’s per LOD, only cache what is necessary

Cache smarter…not harder
Are Vector Tiles really a game changer?
Yes...yes they are!
Design considerations

• Only feature layers with simple, unique value, graduated, or class breaks symbology supported

• **New at Pro 1.4**
 - Support for Arcade label expressions
 - Support for Display filters

• **Maps should be re-authored for vector tiles**
 - Limit number of layers
 - Limit duplication of content
 - Be mindful of users that want to re-style your maps
Authoring maps

- Several improvements have been made in ArcGIS Pro to create efficient and cartographically rich tilesets
 - Scale dependent capabilities added to symbology
 - Alternate symbols added to symbology
 - Scale based sizing added to symbology
 - Improvement to scale logic
Scale logic changes

- **ArcMap and ArcGIS Pro 1.1**
 - Layers will draw AT and BETWEEN minimum and maximum scales

- **ArcGIS Pro 1.2, layers don’t draw at max scale by default**
 - Check “Draw up to and including the maximum scale in scale ranges” to revert to old behavior
 - This is checked for old Pro projects or imported ArcMap maps
Authoring / Sharing
Scale dependent symbology

- Each symbol class can be assigned a scale range
 - Unique value
 - Class breaks

- Allows a multiscale map to be authored without duplicating content
Alternate symbols for symbology

- Symbol classes can switch symbols at scales
 - Unique value

- Allows you to change the appearance of a symbol without duplicating layer
Scale based symbol sizing

- Each symbol can have scale based sizing configured
 - Single symbol
 - Unique value
 - Class breaks

- Allows for small changes to symbol size across scales
Styling vector tiles

• **Simple Style Copy**
 - Save tile layer to your Portal or Online account

• **Hand editing JSON**
 - Update map item

• **Two additional sample Vector Styling Apps simplify this:**
 - [Vector Style JSON Editor](https://github.com) - GitHub
 - [Vector Basemap Style Editor](https://github.com) - GitHub
Styling demo
Summary

Raster Tiles

- **Big Footprint**
 - TB’s of cache data
 - Single SOC for Map / Image Service
- **Generation can consumes lots of resources**
 - nCPU x Time = Weeks
- **Most flexible**
 - Any CRS
 - Any Data (imagery or vector)
 - Any Client

Vector Tiles

- **Small footprint**
 - 13 GB for whole world
 - Hosted tile layer
- **Generation consumes less resources**
 - CPU x Time = hours
- **Getting more flexible**
 - Any supported CRS*
 - Vectors, no imagery
 - Modern browsers with WebGL
 - Pro v 1.3
Questions?
Please Take Our Survey on the **Esri Events App**!

1. **Download the Esri Events app and find your event**
2. **Select the session you attended**
3. **Scroll down to find the survey**
4. **Complete Answers and Select “Submit”**
Print Your Certificate of Attendance
Print stations located in the 140 Concourse

<table>
<thead>
<tr>
<th>Monday</th>
<th>Tuesday</th>
</tr>
</thead>
<tbody>
<tr>
<td>12:30 PM – 6:30 PM</td>
<td>10:45 AM – 5:15 PM</td>
</tr>
<tr>
<td>GIS Solutions Expo, Hall B</td>
<td>GIS Solutions Expo, Hall B</td>
</tr>
<tr>
<td>5:15 PM – 6:30 PM</td>
<td>6:30 PM – 9:30 PM</td>
</tr>
<tr>
<td>Expo Social, Hall B</td>
<td>Networking Reception, Smithsonian National Air and Space Museum</td>
</tr>
</tbody>
</table>