Forest fuels evaluation and fuels treatment planning

Keith M. Reynolds, Paul F. Hessburg
Pacific Northwest Research Station
Robert E. Keane
Missoula Fire Sciences Lab
Introduction

- Wildland fuels have accumulated in many western forests of the US for over 70 years.
- These additional fuels are contributing to more intense fire behavior and increasing fire resistance to containment and control.
 - Property and natural resources have been destroyed.
 - Costs of fire management have escalated.
 - Fire-dependent forest and rangeland ecosystems have deteriorated.
 - Risk to human life and property continue to escalate.
Objectives

- Describe a decision-support system for interpreting data and synthesizing information to
 - evaluate fuel conditions and potential fire impacts, and
 - prioritize subwatersheds for fuel treatments.
- Demonstrate use of the system with an example from the Rocky Mountain region in the State of Utah.
 - A planning area of about 4.8 million ha, encompassing 575 complete subwatersheds.
- Discuss considerations for extending the application to support strategic planning at national, regional, and local scales.
Assessment area
The decision-support system

- Our application is built with the Ecosystem Management Decision Support (EMDS) system
 - ArcMap extension for ArcGIS 8.1 and later.
- Major components of the application
 - A logic engine that evaluates fire hazard in terms of fuels, fire behavior, and climate.
 - A decision engine that prioritizes 6th-code HUCs for fuels treatment.
- Evaluation *versus* planning
Logic models

- A form of meta database
 - A formal logical representation of how to evaluate information.
- Graphically designed with networks of interrelated topics
 - Intuitive and easy to understand.
- Mental map
 - Adds rigor to an assessment process.
Logic models: forms of uncertainty

- **Probabilistic uncertainty**
 - Uncertainty of events

- **Linguistic uncertainty**
 - Uncertainty about the definition of events
 - Vagueness or imprecision
Logic models: strength of evidence

An example: strength of evidence for suitable slope for tractor logging.

Degree of support

![Graph showing the relationship between percent slope and strength of evidence for degree of support.]

Boolean reasoning

![Graph showing the relationship between percent slope and strength of evidence for Boolean reasoning.]

Strength of evidence vs. Percent slope for degree of support:
- Yes at 0%
- Partial between 0% and 100%
- No at 100%

Strength of evidence vs. Percent slope for Boolean reasoning:
- Yes at 0%
- No at 100%
Outline of the logic

- **Fire hazard**
 - **Fire vulnerability**
 - Surface fuels
 - Fire behavior fuel model
 - Fuel characterization class
 - Canopy fuels
 - Canopy bulk density
 - Canopy base height
 - Fire regime condition class
 - **Fire severity**
 - Spread rate
 - Flame length
 - Fire line intensity
 - Crown fire potential
 - **Ignition risk**
 - Palmer drought severity index
 - Keetch-Byram drought index
 - NDVI Relative Greenness index
 - Lightning strike
Data sources for logic model

- Fire vulnerability
 - LANDFIRE program
- Fire severity
 - FIREHARM model (Keane)
- Ignition risk
 - NOAA
Interactive tour of fire hazard

Launch tour of fire hazard analysis
Decision model for fuels treatment
Priorities for fuels treatment
Influence of wildland-urban interface

Treatment priority

WUI
Contributions of primary criteria

Contributions to Criterion [Fuel treatment priority] from [Level 2]

<table>
<thead>
<tr>
<th>Features</th>
<th>Score</th>
<th>SMART Priority Scores</th>
<th>Criteria Legend</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toll Canyon-East Canyon Cr</td>
<td>0.737</td>
<td>Fire vulnerability</td>
<td></td>
</tr>
<tr>
<td>Kimball Creek</td>
<td>0.590</td>
<td>Fire severity</td>
<td></td>
</tr>
<tr>
<td>Spring Creek-Provo River</td>
<td>0.548</td>
<td>Ignition risk</td>
<td></td>
</tr>
<tr>
<td>Pineview Reservoir-North Fo</td>
<td>0.496</td>
<td>Wildland-urban</td>
<td></td>
</tr>
<tr>
<td>Thompson Creek-Sevier Riv</td>
<td>0.491</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dry Lakes Creek</td>
<td>0.468</td>
<td></td>
<td></td>
</tr>
<tr>
<td>South Canyon-Pargulch Cre</td>
<td>0.456</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lady Long Hollow-Provo Riv</td>
<td>0.451</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Headwaters Santa Clara Riv</td>
<td>0.444</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lydias Canyon-East Fork Vir</td>
<td>0.443</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Application to multiple scales

- **Strategic planning**
 - National, regional, and subregional.
 - Broad-scale decisions (e.g., resource allocation).
 - Spatial extent of assessment is user defined.

- **Tactical planning**
 - At smaller spatial extents (e.g., a Forest), strategic results provide context for tactical tools.
 - Extension of methods to fine scale (San Bernardino NF).
Outputs versus outcomes

- Change in performance standards
 - Old (outputs): acres treated per year
 - New (outcomes): acres of reduced fire danger per year

- New planning rule and EMS
 - Adaptive management (ISO 14001)
 - Hypothesis testing
 - Shift in distribution of outcomes?

![Graph showing shift in distribution of fire danger over time](image)
Additional info

- **Contacts**
 - kreynolds@fs.fed.us
 - phessburg@fs.fed.us
 - rkeane@fs.fed.us

- **Website**
 - http://www.fsl.orst.edu/emds
 - For PDF publications, etc., see the literature page.