

Outline

- History of Project
 - Random Point generator which then evolved into a "smarter version" to incorporate statistical sampling techniques

Scope

Simple tool to derive sampling locations for fieldwork using multiple approaches and analyzing the results.

But, what can it do for me??

- Can answer questions such as
 - Given a fixed budget, how should sample be allocated to get the most precision from a stratified sample?
 - Given a fixed sample size, what is the most precision that I can get from a stratified sample?
 - What is the smallest sample size that will provide a given level of survey precision?
 - Given a particular sample allocation plan, what level of precision can I expect?

Mission

- Determine which Sampling Approach is best. Generally constraints are
 - Sampling Objectives
 - Cost
 - Expertise
 - Available Data

Mission (continued)

Representative sampling may be considered as the measure of the degree to which data accurately and precisely represent a characteristic of a population, parameter variations at a sampling point, a process condition, or an environmental condition [American National Standards Institute/American Society for Quality Control (ANSI/ASQC) 1994].

Example: Sampling Bias

Why do We Care?

- We want to avoid sampling biased
 - A biased sample is one that is falsely taken to be typical of a population from which it is drawn.

Basics

- Cochran Sampling Technique
 - With simple random samples, every possible sample has the same probability of being selected.
 - With stratified random sampling, the population is divided into strata and a simple random sample is selected from each stratum.

- We want to sample a population which is delimited by an area what do we do??
 - Establish Survey Objectives
 - Determine mean & variances (optional)
 - Determine what precision could be afforded

The Process

USER Input

GIS Function

Calculations

Output

Data Acquisitior

Optional

- Basic Sample Units Defined
- Basic Sample Units Undefined
- Basic Field pre-populated with points field

■ Simple
Random −
Sample Units
Undefined

- StratifiedRandom –Sample UnitsDefined
- StratifiedRandom –Sample UnitsUndefined

- Multistage Simple Random
- SimpleRandom –Sample UnitsUndefined

- Step 1 Generate Strata Mean and Variance
 - Our example is Stratified Random Sample Units Undefined
 - survey data (points) and appropriate strata layer (polygon)
 - Select point layer and polygon layer which we want to use to determine strata mean and variance
 - Usually computed using pilot data or data from precious surveys

- Step 2A
- Determine appropriate sampling allocation

The Math

- Step 2B Decide on Allocation Methods: Proportional or Optimal
 - Proportional to area
 - Best if no variance data is available
 - Samples allocated by strata area
 - Optimal
 - Also called the Neyman Allocation Method
 - Samples allocated by area and metric variance

$$n_h = n \cdot \left(\frac{W_h}{\sum_h W_h} \right)$$

$$n_h = n \cdot \left(\frac{W_h s_h}{\sum_h W_h s_h} \right)$$

- Step 2C (optional)
- Check Comparison Values

- Step 2C (optional)
- Enter Precision Values to see results

Calculate sample allocation

- Step 2D (optional)
- Select point centroid option

Results Summary

- So for the statistically challenged
 - If all things spatially (area) are equal between two strata a higher calculated nh means that the areas are more heterogeneous
 - If nh is lower the area is more homogeneous

Conclusion

- So why is this application helpful/useful?
 - This tool provides a much needed spatial component to Cochran's Sampling methodology.
 - The user can quickly run numerous scenarios with varied sampling strategies, precision, unit size and error rates to arrive at the best sampling approach to meet his needs
 - Allows efficient planning of resources, prevents user from oversampling

Other Sample Uses

- Law Enforcement
- Environmental
- Defense
- Planning
- And many others..

Still In Concept

- Given a fixed sample size, how should sample be allocated to get the most precision from a stratified sample?
- What is the minimum cost to achieve a given level of survey precision?
- As Nh is maxed determine at what point you get the highest precision possible?
- Handle binomial data

Questions

Eric.finnen@noaa.gov

Charles.menza@noaa.gov