Powering an Efficient Geospatial Data Sharing Framework with Spatial ETL
Overview

- Introduction

- **Case Study #1: Data clearing house**
 - Arkansas- GeoSTOR

- **Case Study #2: Data Harmonization**
 - North Central Region Data Repository

- **Case Study #3: Emergency Response**
 - Indiana Department of Homeland Security

- **Case Study #4: CAD ↔ GIS Integration**
 - Ohio Department of Transportation

- Summary
Spatial ETL used to break barrier between data, applications, and users
Different users have and want different things!
Common Theme

- Different Systems = different data model
- Different organizations = different data model
- Different problem focus = different data model
Data Model is King

- Data sharing requires solving *both* the format problem and the data model problem
- Data Model reconciliation is the real problem!
Overview

- Introduction

- Case Study #1: Data clearing house
 - Arkansas- GeoSTOR

- Case Study #2: Data Harmonization
 - North Central Region Data Repository

- Case Study #3: Emergency Response
 - Indiana Department of Homeland Security

- Case Study #4: CAD ⇔ GIS Integration
 - Ohio Department of Transportation

- Summary
Challenge

- Automate distribution of GIS data
- Vector and Raster Data in Multiple Formats
- Data in different coordinate systems
- FGDC Metadata required
- Over 250 searchable layers
Benefits

- Reduced costs for state
- Reduced wait times for end users
- Metrics on layers and areas interest
- Increased number of formats for data
Overview

- Introduction

- **Case Study #1: Data clearing house**
 - Arkansas- GeoSTOR

- **Case Study #2: Data Harmonization**
 - North Central Region Data Repository

- **Case Study #3: Emergency Response**
 - Indiana Department of Homeland Security

- **Case Study #4: CAD ⇄ GIS Integration**
 - Ohio Department of Transportation

- Summary
Challenge

Different systems and data models
Challenge
Data Harmonization

Schema Mapping

Database

Schema Mapping
Schema Mapping Concept

County-A Model
- Road Name
- Num Lanes
- Pavement Type
- Address Range
- Begin Milepoint
- End Milepoint

Database Model
- Segment ID
- State Name
- Local Name
- Local LRS
- Number Lanes
- Pavement Type
- Address Range
- Begin Arm
- End Arm

Spatial ETL Process
Collecting Information

- 10 very different data schemas, from the very simple to the very complex

Source: Arapahoe County
Collecting Information

- 10 very different data schemas, from the very simple to the very complex

Source: Arapahoe County

Resolving the county schemas into the Master Schema is the key to success!
Database Schema

- Prototype application with 8 spatial data layers
 - Roads
 - Parcels
 - Census Blocks
 - Municipalities
 - Lakes
 - Streams
 - Fire stations
 - Schools

 Plus two non-spatial layers to support one-to-many relationships
Collecting Information

- NCR data schema developed to house translated data sets

Feature classes, attributes, and domains need to be mapped and translated
Application Design

- ArcSDE/Enterprise Geodatabase
- Password-protected web application
Application Design

- ESRI ArcGIS Server web-based mapping application
Data Upload
Data model changed as part of upload process.
Data Download
Data Download

- **Download Area Options**
 - By Area – Drag a rectangle, define on map
 - By Point and Buffer - Define on map
 - By Municipality – Clip polygon
 - By County – By County field in attribute table

- **Schema Options**
 - 10 different counties plus NCR master schema

- **Coordinate System Options**
 - UTM, 4 different state plane, LL NAD83

- **Layer Options**
 - Select any and all available data layers
Benefits

- Unique planning tool with seamless region-wide dataset
- Dialog between counties promotes better coordination
 - Edge matching
 - Data schema harmonization
- Serve as a model for inter-region and statewide coordination
Overview

- Introduction

- Case Study #1: Data clearing house
 - Arkansas- GeoSTOR

- Case Study #2: Data Harmonization
 - North Central Region Data Repository

- Case Study #3: Emergency Response
 - Indiana Department of Homeland Security

- Case Study #4: CAD ↔ GIS Integration
 - Ohio Department of Transportation

- Summary
Challenge

- Integrate multiple county’s data
- Provide data to first responders for situational awareness
- Easily expandable architecture
Solution Concept

- Each county produces a WFS feed
- WFS data loaded into Department of Homeland Security’s geospatial data model
- ArcGIS Server used to disseminate the needed information

Resolving the county schemas into the Master Schema is the key to success!
Architecture

Source: ESRI
Benefits

- The most current data in the state
- Centralized data available to all partners
- Simple, customizable user interface
- Enables high-level financial analysis of an impacted area
Overview

- Introduction

- Case Study #1: Data clearing house
 - Arkansas- GeoSTOR

- Case Study #2: Data Harmonization
 - North Central Region Data Repository

- Case Study #3: Emergency Response
 - Indiana Department of Homeland Security

- Case Study #4: CAD ↔ GIS Integration
 - Ohio Department of Transportation

- Summary
Challenge

- Integrate CAD and GIS data from different counties
- Build data store which facilitates tool choices for future.
- Conflate data to build unified view.
CAD Unification
Future Projects
Benefits

- Reduced data Redundancy
- Increased Data availability thru web-based interface to all stakeholders
- Reduced cost thru more efficient operations
- Lives saved thru more current information.
- Architecture makes future growth much easier.
Overview

- **Introduction**

- **Case Study #1: Data clearing house**
 - Arkansas- GeoSTOR

- **Case Study #2: Data Harmonization**
 - North Central Region Data Repository

- **Case Study #3: Emergency Response**
 - Indiana Department of Homeland Security

- **Case Study #4: CAD ↔ GIS Integration**
 - Ohio Department of Transportation

- **Summary**
There are many ways to share spatial data assets using Web Technology

Data Harmonization is key to effective data sharing between groups
 - Requires a common understanding of the data that is being shared.

Spatial ETL is technology focused on resolving data model differences
 - Enabling users to get the data they need to the applications they use.
To learn more, please contact me at
Don.Murray@safe.com

Thank you!