The Association of Socioeconomic Status and Late Stage Breast Cancer in Florida:

* A Spatial Analysis using Area-Based Socioeconomic Measures

Jill Amlong MacKinnon, PhD
Florida Cancer Data System
University of Miami Miller School of Medicine
Co-Authors

- Dr. Robert Duncan, UMMSM
- Dr. Youjie Huang, Florida DOH
- Dr. David Lee, UMMSM
- Dr. Lora Fleming, UMMSM
- Dr. Lydia Voti, UMMSM
- Mr. Mark Rudolph, UMMSM
- Dr. Jay Wilkinson, UMMSM

Cancer Epidemiology, Biomarkers and Prevention. 16(4); 756-762, 2007 April 1.
Outline

- Background and Significance
- Methods
 - SatScan
 - Area-Based Measures
- Results
- Conclusions
- Future Research
Axiom of Public Health

“Social Status is one of the Strongest Determinants of Health”
Goal of Research

- Develop a new methodology to assist with the identification of populations that are at high risk of being diagnosed with late stage breast cancer.
- Assess what effect Socioeconomic Status (SES) has on the incidence of late stage breast cancer in Florida.
- Assist Cancer Surveillance and Control professionals to design specific and targeted interventions for these high risk populations.
Background and Significance
Breast Cancer

- Breast cancer is the most common cancer in women in the US and Florida
 - Second leading cancer-related death in women
Breast Cancer in Florida 1998-2002

- **Incidence**
 - N ~ 64,000 (AAR 125.4/100,000)
 - **Late Stage** (regional and distant)
 - N ~ 19,000 (AAR 39.3/100,000)

- **Mortality**
 - N ~ 13,000 (AAR 23.8/100,000)
Socioeconomic Status (SES)

- SES appears to be related to breast cancer incidence, mortality and survival (Baquet, Commiskey)

- Lack of SES data in surveillance data limiting research
 - Overcome this limitation with use of area-based socioeconomic measures
Area-Based Socioeconomic Measures

- Census-derived
- Possible because of geocoding
- Meaningful indicators
 - Analyzed together with individual data
- Information on
 - Area residents
 - Area characteristics
Area-Based SES Measures (con’t)

- **Strengths**
 - Appended to any database with addresses
 - Provides contextual and compositional data
 - Applied equally to all persons

- **Weaknesses**
 - Not individual data
 - SES at time of case ascertainment
 - Can be outdated - decennial Census
Methods Overview

- **Study design**
 - Cross sectional

- **Dependent variable**
 - Incidence of late stage breast cancer

- **Independent variables**
 - Race/ethnicity, SES, insurance, urban/rural, mammography use

- **Unit of analysis**
 - Block Group
Disparate Block Group SES within Census tracts
Study Setting and Population

- State of Florida
 - Cancer data obtained from Florida Cancer Data System
 - Population and area-based measures obtained from the 2000 US Census
Sampling Frame

- **Inclusion Criteria**
 - Female, Florida resident
 - Diagnosis date between 1998 and 2002
 - Regional or distant (late stage) breast cancer

- **Cases in study n = 18,683**
 - Valid race (excluded n=31)
 - Valid address geocode (excluded n= 309)

- **Block groups in study n = 6,361 (of 9,112 in Florida ~ 70%)**
Patient Level and Area-Based Measures

- **Patient Level**
 - Primary site/stage of disease
 - Race
 - Insurance status

- **Area-Based**
 - Socioeconomic Status
 - Urban/Rural designation
 - Mammography usage
Insurance Status

- **Patient level**
 - Uninsured
 - Private
 - Medicare
 - Medicaid

* FCDS data - 92 cases ‘unknown’ insurance status randomly assigned to other 4 categories based on distribution

Recoded from 15 different categories
Socioeconomic Status

“Ratio of Income to Poverty” (9 categories)

<table>
<thead>
<tr>
<th>Recoded Groups (Krieger, et al)</th>
<th>Actual Percentages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Severe Poverty</td>
<td>79%</td>
</tr>
<tr>
<td>Near Poverty</td>
<td>17%</td>
</tr>
<tr>
<td>Non-Poverty</td>
<td>4%</td>
</tr>
</tbody>
</table>

- Dade County, Block Group Number 15012 (n=2,474)
Urban/ Rural Designation

- Beale Codes - 10 urban-rural county continuum codes
 - Describe counties by their population size, degree of urbanization and nearness to a large metropolitan area
 - Urban – 3 codes
 - Rural – 7 codes
- Dichotomized into urban or rural
Mammography Usage

- Florida Behavioral Risk Factor Survey
 - County level (67 counties)
 - County quartiles
 - Highest to lowest usage
Spatial Analysis - SaTScan

- Developed under the joint auspices of Dr. Martin Kulldorff, the National Cancer Institute and Dr. Farzad Mostashari at the New York City Department of Health and Mental Hygiene.

- Spatial scan statistic
 - Cluster detection test
 - Detect location of clusters
 - Evaluate their statistical significance
SaTScan Process

- **Block group level**
 - Race and Age covariates

- **Files needed**
 - Cases
 - Population
 - Block group centroid
SaTScan

- **Monte Carlo techniques**
 - Assigns relative risk probabilities to defined block groups
 - Generates a number of random replications of the data set under the null hypothesis
 - Test statistic is calculated for each random replication as well as for the real data set
 - If the real data set is among the 5 percent highest, then the test is significant at the 0.05 level
SaTScan (con’t)

- Poisson probability model
 - 999 Monte Carlo replications
- Expected n of cases
 - Indirect standardization (State)
- Adjusts for covariates and interaction terms (race and age)
- Spatial analysis only
- Identified areas with higher than expected number of cases
Identify Geographic Area with Higher than Expected Late Stage Breast Cancer
SaTScan Results

- **Block groups**
 - Higher than expected incidence - n=767
 - Expected incidence - n=5,444
Block Groups with Higher than Expected Late Stage Breast Cancers 1998-2002

Legend
SaTScan Results
Higher than Expected
Aggregate Block Group Age Specific Rate by Incidence

Age Group

Age Spec Rate/100,000

Age Group

Higher
Expected
Evaluate the degree to which SES is associated with late stage breast cancer
Percent Severe Poverty by Rate of Late Stage Breast Cancer (Block Group)

\[y = 0.4145x + 8.786 \]

\[R^2 = 0.9097 \]
Block Group Odds Ratios and 95% Confidence Intervals of Higher than Expected Late Stage Breast Cancer Stratified by Ratio of Income to Poverty

- OR = 4.1 (2.3, 7.1)
- OR = 1.7 (1.3, 2.2)
- OR = 1.2 (1.0, 1.5)
- OR = 0.7 (0.6, 0.9)
- OR = 1.0
Final Regression Model
SES

<table>
<thead>
<tr>
<th>Wealth</th>
<th>1</th>
<th>---</th>
</tr>
</thead>
<tbody>
<tr>
<td>Near Poverty</td>
<td>1.6</td>
<td>(1.0, 2.6)</td>
</tr>
<tr>
<td>Severe Poverty</td>
<td>3.0</td>
<td>(2.2, 4.0)</td>
</tr>
</tbody>
</table>

Insurance Status

<table>
<thead>
<tr>
<th>Uninsured</th>
<th>1</th>
<th>---</th>
</tr>
</thead>
<tbody>
<tr>
<td>Private</td>
<td>0.9</td>
<td>(0.6, 1.4)</td>
</tr>
<tr>
<td>Medicare</td>
<td>0.6</td>
<td>(0.4, 0.9)</td>
</tr>
<tr>
<td>Medicaid</td>
<td>0.9</td>
<td>(0.5, 1.6)</td>
</tr>
</tbody>
</table>

Mammography Use

<table>
<thead>
<tr>
<th>Highest Quartile 1</th>
<th>1</th>
<th>---</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quartile 2</td>
<td>1.3</td>
<td>(1.1, 1.6)</td>
</tr>
<tr>
<td>Quartile 3</td>
<td>3.6</td>
<td>(3.0, 4.5)</td>
</tr>
<tr>
<td>Lowest Quartile 4</td>
<td>6.5</td>
<td>(5.1, 8.3)</td>
</tr>
</tbody>
</table>

Urban/Rural

<table>
<thead>
<tr>
<th>Rural</th>
<th>1</th>
<th>---</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urban</td>
<td>2.9</td>
<td>(2.0, 4.2)</td>
</tr>
</tbody>
</table>
Figure 1 - Areas of Higher than Expected Late Stage Breast Cancer Overlaid with Urban/Rural Counties and Mammography Prevalence

SaTScan Results
Higher than Expected Incidence

Urban and Rural Counties

Mammography Prevalence
Prevalence Quartiles
- <73.0
- 73.3 - 77.2
- 77.3 - 80.6
- >80.6

SaTScan Results
Higher than Expected Incidence
Conclusions

- **Area-based measures**
 - Robust measures that can augment population-based surveillance systems

- **Effect of SES on late stage breast cancer**
 - Clear gradient
 - Not confounded by other factors
 - 28% of higher than expected incidence can be attributed to SES
Limitations

- Study design
 - Cross sectional
- Population
 - 2000 Population denominator for all years
- Geocoding
 - Precision
 - Excluded cases
- SES indicator
 - Single variable
Future Research

- Apply methodology to other diseases
 - Esophageal
 - Bladder
- Multi-level modeling
- Survey
 - Truth the SES data
 - Obtain additional psycho/social data
 - Barriers to access and/or utilization
Funding Sources

- Florida Department of Health
- Centers for Disease Control
- Sylvester Comprehensive Cancer Center
- University of Miami Miller School of Medicine
Acknowledgments

- Dr. Edward Trapido
- Dr. Lora Fleming
- Staff of FCDS, DOH, CDC and SCCC
 - Mark Rudolph
 - Dr. Lydia Voti
 - Brad Wohler
 - Gary Levin
- Florida’s Cancer Registrars
Thank you