A Preliminary Microspatial Analysis of Urban Intersections and Injury

Luke Basta, Erin Quinn
University of Pennsylvania School of Medicine
Department of Epidemiology and Biostatistics

Funded by National Institute on Alcohol Abuse and Alcoholism, R01AA016187

Special thanks to: Charles Branas, PhD; Douglas Wiebe, PhD; and Elizabeth Ellis Ohr, PsyD
Injury is a major cause of death among adolescents in the United States.

Approx. 15,000 13-to-20 year olds die from injuries each year.

The injury death rate among these adolescents is at least eight times that of all other, non-traumatic causes of adolescent death combined. (i)

2007 Causes of Death for 13-20 year olds

<table>
<thead>
<tr>
<th>Rank</th>
<th>Cause of Death</th>
<th>Deaths</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Unintentional Injury</td>
<td>8,948</td>
</tr>
<tr>
<td>2</td>
<td>Homicide</td>
<td>3,040</td>
</tr>
<tr>
<td>3</td>
<td>Suicide</td>
<td>2,068</td>
</tr>
<tr>
<td>4</td>
<td>Malignant Neoplasms</td>
<td>1,060</td>
</tr>
<tr>
<td>5</td>
<td>Heart Disease</td>
<td>516</td>
</tr>
<tr>
<td>6</td>
<td>Congenital Anomalies</td>
<td>297</td>
</tr>
<tr>
<td>7</td>
<td>Cerebrovascular</td>
<td>106</td>
</tr>
<tr>
<td>8</td>
<td>Chronic Low. Respiratory Disease</td>
<td>101</td>
</tr>
<tr>
<td>9</td>
<td>Influenza & Pneumonia</td>
<td>90</td>
</tr>
<tr>
<td>10</td>
<td>Diabetes Mellitus</td>
<td>86</td>
</tr>
</tbody>
</table>

Source: Center for Disease Control; http://webappa.cdc.gov/sasweb/ncipc/leadcaus10.html
Background (cont.)

• Adolescent injuries are the end-result of a "causative web" of contributing factors.
• These factors can be broadly measured at the neighborhood level.
• This measurement strategy may neglect many microspatial effects that are visible at the level of street configurations, buildings, and specific parcels of land.
• Analyzing the geometric structure of the environment might be used to identify these under-studied microspatial effects.
Background (cont.)

By exploring the geometric structure of injury sites to subjects through a case-control study design, we will be able to investigate the potential influence that these factors may have on the risk of adolescent injury.
Background (cont.)

• Previous research in motor vehicle accidents have led to an increased understanding of the effect of road geometry on fatal injury.

• Geometric features have an impact on:
 - Perception, decision, and reaction time.
 - People’s abilities to process safety.
 - Ability to respond to safety threats. (iii)
• Spatial processing that occurs during traffic accidents may generalize to other environmental injury threats.

• The road geometry of all injuries may provide important information about factors in the built environment.
Methods

• This study is an innovative use of existing data sources and telephone interviews to conduct a population-based case-control study of the relationship between fatal adolescent injury, the built environment, and other factors (such as alcohol).

• Each control:
 – Households are located within Philadelphia County
 – Physically located in Philadelphia at the time of their index case’s injury study
Methods (cont.)
Density Maps of Case/Control Locations

All subjects

Cases (red) Controls (blue)
Density Maps of Case/Control Locations
660ft buffer around Case-Control layer points. Buffered layer joined to closest street segment from Philadelphia street file, captures number of surrounding junctions (4 to 80) and street class. Intersection type (3-, 4-, 5-point, etc) determined visually.
Results

<table>
<thead>
<tr>
<th></th>
<th>JUNCTIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean (SD)</td>
<td></td>
</tr>
<tr>
<td>Cases</td>
<td>40.0 (15.9)</td>
</tr>
<tr>
<td>Controls</td>
<td>31.1 (17.1)</td>
</tr>
</tbody>
</table>

\[p = 0.002 \quad p = 0.007 \]

Please note that this is all preliminary data!
<table>
<thead>
<tr>
<th></th>
<th>JUNCTIONS</th>
<th>Median (p25, p75)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-intersections</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cases</td>
<td>21 (24, 48)</td>
<td></td>
<td>0.025</td>
</tr>
<tr>
<td>Controls</td>
<td>17 (8, 32)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-point intersections</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cases</td>
<td>36 (33, 51)</td>
<td></td>
<td>0.070</td>
</tr>
<tr>
<td>Controls</td>
<td>34 (20, 47)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Logistic regression modeling junctions (×10)

• Yielded an odds ratio of 1.39 (p=0.006, 95% CI 1.01, 1.75) comparing cases to controls.

• This held true when controlling for street class and intersection type: odds ratio=1.46 (p=0.003, 95% CI 1.14, 1.86).
Discussion

• Many spatial analyses focus on administratively defined geographic areas (ZIP codes and census tracts).
• This type of analysis does not lend itself to a microspatial examination and does not take into consideration the nuances of the built environment.
• Specifically, the geometry and orientation of roadways may influence fatal injury in adolescents.
• Analyzing and quantifying the geometric structure of the microspatial environment can be used to understand the built environment and its impact on adolescent injury.
From our preliminary data, we found:

- Cases are surrounded by more junctions than controls at the time of injury.
- While there is no significant difference in street class with respect to junctions, there was a significant difference in the number of junctions surrounding three and four point intersections, favoring the cases.

These findings underscore the importance of a microspatial examination of where adolescent injury occurs.
Discussion (cont.)

• This type of microspatial analysis is of particular importance in densely populated urban centers.
• ArcGIS allows us to create geospatial boundaries that are not administratively defined, and so examine the causative factors of injury at a microspatial level that may have greater relevance to public health.
References

