SHARP GIS: UNC’s Spatial Health Assessment and Research Program

Matthew C. Simon, MA,¹ Jennifer A. Horney, PhD, MPH, CPH¹,²

¹ UNC Center for Public Health Preparedness;
² Department of Epidemiology, UNC Gillings School of Global Public Health
SHARP GIS Services

- Filling a niche; providing GIS technical service to public health agencies
- Some activities will serve partner states under new Centers for Disease Control and Prevention program
 - Preparedness and Emergency Response Learning Centers (PERLCs)
 - UNC one of 14 centers nationwide
SHARP GIS Mission

- SHARP’s Mission: Assist local, state, regional and national public health agencies with:
 - data collection and spatial analysis projects related to emergency preparedness or other community-wide or regional public health concerns.
 - Community Assessment for Public Health Emergency Response (CASPER)
 - GIS technical support
 - GPS equipment and training
Assessment Methods

- Rapid Needs Assessments or Community Assessment for Public Health Emergency Response (CASPERs) are an objective way to collect information about:
 - External or flood damage to homes
 - Access to household utilities
 - Incidence of hurricane-related illness and injury
 - Access to food, water, medical care, etc.
 - Emotional stress and anxiety (new in 2005)
 - Other non-emergency assessments
CASPER in North Carolina

• A recognized national leader in development and deployment
• 15 + deployments since 2003
• Hurricanes Isabel, Charley, Wilma, Katrina
• Outbreak exercises
• Community health assessments
• Iowa floods
• Other research and planning (H1N1, evacuation, reproductive health needs)
CASPER Methods in NC

• Two-stage cluster sampling (30/7)
 – PSU: Census data, blocks or block groups
 – Stage 1: Weighted average with a probability proportion to population or housing units is used to chose 30 clusters (blocks)
 – Stage 2: 7 random interview locations are chosen and reverse-geocoded

• ArcGIS toolbar called PHRST Tools

• 10 trained interview teams; standard questionnaire
PHRST Tools
Public Health Regional Surveillance Team

Site selection toolkit freely available from UNC (cphp.sph.unc.edu/sharpgis/)
Stage 1: Determine Sampling Frame and Primary Sampling Unit

Photo ID; two NC counties sampled as part of a survey to assess intent to receive H1N1 vaccine.
Stage 1: Determine Sampling Frame and Primary Sampling Unit

Photo ID; two NC counties sampled as part of a survey to assess intent to receive H1N1 vaccine.
Stage 1: Sample with a Probability Proportionate to Population
Stage 2: Random Survey Locations
Interview Team Assignments

Keep track of team assignments
Optimized Driving Directions
ArcPad Studio is used to design custom forms for surveys.
Handheld Data Collection
Status of household health and needs after Hurricane Isabel — North Carolina, 2003

<table>
<thead>
<tr>
<th>Status</th>
<th>Households</th>
<th>(95% CI)</th>
<th>No. of households projected, 14-county area</th>
<th>(95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>External home</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimal or no damage</td>
<td>65.3 (%)</td>
<td>(55.6–75.0)</td>
<td>61,240</td>
<td>(52,143–70,337)</td>
</tr>
<tr>
<td>Damaged, habitable</td>
<td>32.3 (%)</td>
<td>(22.8–41.7)</td>
<td>30,292</td>
<td>(21,383–39,108)</td>
</tr>
<tr>
<td>Damaged, uninhabitable</td>
<td>2.4 (%)</td>
<td>(0.2–4.6)</td>
<td>2,251</td>
<td>(188–4,314)</td>
</tr>
<tr>
<td>Flood water in home</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>96.6 (%)</td>
<td>(93.6–99.6)</td>
<td>90,594</td>
<td>(87,781–93,408)</td>
</tr>
<tr>
<td>1–12 inches</td>
<td>2.3 (%)</td>
<td>(0.2–4.5)</td>
<td>2,251</td>
<td>(188–4,220)</td>
</tr>
<tr>
<td>13–36 inches</td>
<td>1.1 (%)</td>
<td>(0.0–2.6)</td>
<td>1,032</td>
<td>(0–2,438)</td>
</tr>
<tr>
<td>Household utilities</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No running water</td>
<td>23.8 (%)</td>
<td>(10.7–37.0)</td>
<td>22,320</td>
<td>(10,035–34,700)</td>
</tr>
<tr>
<td>No electricity</td>
<td>65.2 (%)</td>
<td>(47.3–83.2)</td>
<td>61,147</td>
<td>(44,359–78,027)</td>
</tr>
<tr>
<td>No functioning indoor toilet</td>
<td>7.0 (%)</td>
<td>(3.1–10.8)</td>
<td>6,565</td>
<td>(2,907–10,129)</td>
</tr>
<tr>
<td>No working telephone</td>
<td>21.0 (%)</td>
<td>(9.4–32.5)</td>
<td>19,694</td>
<td>(8,816–30,479)</td>
</tr>
<tr>
<td>No battery-operated radio</td>
<td>22.6 (%)</td>
<td>(12.8–32.4)</td>
<td>21,195</td>
<td>(12,004–30,386)</td>
</tr>
<tr>
<td>Generator used</td>
<td>30.5 (%)</td>
<td>(18.8–42.3)</td>
<td>28,604</td>
<td>(17,631–39,670)</td>
</tr>
<tr>
<td>Hurricane-related illness or injury</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Injury in household</td>
<td>1.3 (%)</td>
<td>(0.0–3.1)</td>
<td>1,219</td>
<td>(0.0–2907)</td>
</tr>
<tr>
<td>Illness in household after hurricane</td>
<td>4.7 (%)</td>
<td>(1.7–7.6)</td>
<td>4,408</td>
<td>(1,994–7,128)</td>
</tr>
<tr>
<td>Experiencing stress</td>
<td>29.5 (%)</td>
<td>(20.0–39.1)</td>
<td>27,666</td>
<td>(18,757–36,669)</td>
</tr>
<tr>
<td>Requiring medical care</td>
<td>8.4 (%)</td>
<td>(0.3–16.5)</td>
<td>7,878</td>
<td>(281–15,474)</td>
</tr>
<tr>
<td>Problems obtaining medical care</td>
<td>4.9 (%)</td>
<td>(1.5–8.3)</td>
<td>4,595</td>
<td>(1,407–7,784)</td>
</tr>
<tr>
<td>Problems obtaining medication</td>
<td>6.0 (%)</td>
<td>(1.8–10.2)</td>
<td>5,627</td>
<td>(1,688–9,566)</td>
</tr>
<tr>
<td>Food and water</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Using well water</td>
<td>8.3 (%)</td>
<td>(1.0–15.7)</td>
<td>7,784</td>
<td>(938–1,4724)</td>
</tr>
<tr>
<td>Using public water</td>
<td>48.6 (%)</td>
<td>(35.6–61.6)</td>
<td>45,579</td>
<td>(33,387–57,770)</td>
</tr>
<tr>
<td>Using bottled water</td>
<td>43.1 (%)</td>
<td>(30.3–55.8)</td>
<td>40,420</td>
<td>(28,416–52,331)</td>
</tr>
<tr>
<td>Without access to a 3-day food supply</td>
<td>12.6 (%)</td>
<td>(4.2–20.0)</td>
<td>11,817</td>
<td>(3,030–10,601)</td>
</tr>
</tbody>
</table>

* N = 210.

1 Confidence interval.

Based on combined 2000 U.S. Census estimates for the following counties: Bertie, Camden, Chowan, Currituck, Dare, Gates, Hertford, Hyde, Martin, Northampton, Pasquotank, Perquimans, Tyrrell, and Washington.
Durham County Community Health Assessment

• SHARP provided GIS and GPS technical assistance to the Durham County Health Department

• Designed digital survey instrument in ArcPad Studio

• Mapped potential survey sites for the two-stage cluster sample

• Provided on-site training and technical assistance to survey volunteers and staff
H1N1 Rapid Survey

- Quick Strike funding from RWJF
- Partner with NC DPH and 2 counties to assess barriers to receiving seasonal and pandemic flu vaccine
- Used CASPER methods
• 133 (64%) respondents expressed intent to receive the pandemic H1N1 vaccine
 – Intent to receive strongly associated with:
 • 2008–09 seasonal vaccination (PR=1.47; 95%CI: 1.18, 1.82)
 • intent to receive 2009–10 seasonal vaccine (1.27; 1.14, 1.42)
 • being “very concerned” about H1N1 (1.55; 1.30, 1.85)
 – Main reasons to refuse: unlikely to be infected, not severe illness, belief vaccine will not be effective
• Most respondents (83%) reported they received information about H1N1 vaccine from television
Potassium Iodide (KI) Survey

- Partnered with the NC DPH, NRC, and county health departments
- Assess coverage rates, knowledge & distribution models
- Used CASPER methods
- KI coverage rate 5.1% (non weighted results)
Rapid Assessment of reproductive health needs

- CDC funded pilot survey
- Community sampling for pregnant and post-partum women
- 2 stage sample with referral
 - Increased sample proportion of women of reproductive age who were pregnant/post-partum from 5% to 20%
- Will be surveying flood-damaged coastal NC
Conclusions

- SHARP has adopted CASPER methods to help public health and emergency management officials make informed, data driven decision.
- Handheld computers, GIS, and GPS add value to field-based data collection
- SHARP hopes to provide the tools and training to continue building technical capacity statewide
Form Building Software Alternatives

- NCPH Rapid Survey Builder
 - (beta release available upon request)
- FAST (Field Adapted Survey Toolkit)
- Mobile Phone Technology
 - EpiSurveyor
 - http://www.datadyne.org/episurveyor
 - EpiCollect
 - http://www.spatalepidemiology.net/epicollect/
Questions?

Matthew C. Simon
GIS Analyst, SHARP Program Manager
UNC Gillings School of Global Public Health
CB # 8165, Chapel Hill, NC 27599
mattsimon@unc.edu
(919) 966-0925

Jennifer Horney, PhD, MPH, CPH
Research Asst. Professor & Deputy Director, UNCCPHP and NC PERRC
jen.horney@unc.edu
(919) 843-5566
• Extra slides
Hurricane Wilma (2005)

- Category 3 Hurricane with 125 mile per hour winds
- Landfall 10/24/05 near Naples, Florida
- Moved northeast through Florida causing damage from Miami to West Palm Beach
 - NC Division of Public Health received request through EMAC from Florida DOH for assistance with RNAs using handhelds
Hendry County, Florida

- Hendry County
 - Identified by F-DOH as most severely impacted rural area
 - Montura Ranch Estates
 - 81.3% mobile homes
 - 91% reported receiving disaster relief
 - Pioneer Plantation
 - 63.5% mobile homes
 - 80% reported receiving disaster relief
Broward County, Florida

- 1.7 million residents
- 1000 stoplights, only 124 working
- 69.1% of sample live in building with 6 or more units
- 17.6% still without power 10 days after landfall – approximately 66,000 households
 - Of these 30.9% using generators: 12 reported deaths in Broward Co. from CO poisoning
Hurricane Wilma Improvements

- Educational and information materials in multiple languages
 - Safe clean up, mold, generator safety
- Liaison with County and Florida Departments of Health for referrals
- Tracking interviews and sampling (particularly in multi-level residences)
- Communications
 - Use of VIPER 800 Mhz radios
Iowa Floods (2008)
Key Findings Cedar Rapids

- Only 12.8% (5.3%, 20.2%) of residents in the assessment area are sleeping in their homes (71.2% with family and friends).
 - 87.3% are using bottled water as their primary source of drinking water.
 - 18.3% of households have a household member who does not have access to a 3 day supply of medication because of the flood.
 - 58.5% of households have a member with difficulty concentrating since the flood, and 47.0% of households have a member that has sleep disturbance since the flood.
 - 54.6 (46.6%, 62.7%) report mosquitoes are worse than normal
 - 75% (64.4%, 85.1%) report mold in their homes
CASPER Standard Operating Guidelines (SOG)

- Team make-up
- Job Action Sheets
- Templates

COMMUNITY ASSESSMENT FOR PUBLIC HEALTH EMERGENCY RESPONSE (CASPER)

STANDARD OPERATING GUIDELINES VERSION 2.0

Available at: http://www.epi.state.nc.us/epi/phpr/casper.html