NEIGHBOURHOOD MODELS TO IDENTIFY MAUP EFFECTS USING SPATIAL REGRESSION

Scott Bell
Geography and Planning
University of Saskatchewan

Tayyab Ikram Shah
Geography and Planning
University of Saskatchewan

Kathi Wilson
Geography
University of Toronto Mississauga
My Background and Research

- Scientific Geography
- Human Navigation and Wayfinding
 - Spatial Cognition
 - Leverage WiFi Technology for Indoor Positioning
- Health Geography
 - Access to Primary Health Care
 - Environment and Health
In Canada

- **Canada Health Act**
 - Access to health care services shall be Universal and Equitable (comprehensive too)
 - Health services are managed provincially (10 to 13 difference health care providers)

- **In this study**
 - Primary Health Care: family doctors, GPs, urgent care clinics, after-hours clinics
 - Not: nurse practitioners, health vans/buses, ER, Hospital based GP
The objective of this study

- Uses the three step floating catchment area method (3SFCA) to determine potential (geographical) access to primary health care. We will explore differences in different units of analysis (natural or locally defined neighborhoods, census tracts, and census dissemination areas).
MODIFIABLE AREAL UNIT PROBLEMS (MAUP)

In geographical studies, analytical results can be influenced by:
- the number of areal units used—scale effect
- the choice of boundaries (or aggregation) –zonation effect

Many spatial datasets are collected on a larger scale (household) but are released and shared only after being aggregated at smaller scale (In Canada, Census data are collected from every household, but provided at dissemination areas-DA).

In the process of data aggregation at lower scales (e.g. Census Tracts, Census sub-divisions, etc.), variability in the dataset and statistical estimation using such data can be different.
ACCESS TO PRIMARY CARE

- Access to primary care is an important and growing issue regarding health care delivery in Canada
- It has a direct impact on the burden of disease
- It is an important performance indicator of national health systems
- Access dimensions: Potential vs. Revealed
 - *Potential* access incorporates factors such as the geographic distribution and supply of health care services
 - Revealed accessibility refers to actual utilization patterns of consumers
METHODS FOR ESTIMATING ACCESS TO HEALTHCARE

- Straight Ratios
- Kernel Density Model
- Gravity Model
- Modified Gravity Model
 - spatial decomposition model
 - two-step floating catchment area method
 - three-step floating catchment area method (3SFCA)
MEASURING SPATIAL ACCESS TO PRIMARY HEALTHCARE

An index of spatial access to primary healthcare at neighbourhood and census tract levels, determined through 3SFCA method

Buffers: (Type: Road network; Size: 3km)

First, geocode all family doctors, general practitioners, and clinic locations using reference dataset (DMTI CanMap streetfiles 2010 and platinum postal code suite).

This method provides an accessibility score for each unit of analysis in the study area (number of physicians per 1000 individuals)
STUDY AREA

Population (2006 Census):
Saskatoon = 202,042
Mississauga = 667,901

Households (2006 Census):
Saskatoon = 83,680
Mississauga = 214,380

Neighbourhoods:
Saskatoon = 83 (74*)
Mississauga = 32

* having population
ACCESS IN MISSISSAUGA, NEIGHBOURHOODS, THREE BUFFER SIZES
Significant Predictors

<table>
<thead>
<tr>
<th>Variables (forward stepwise linear regression - (95% CI))</th>
<th>Mississauga</th>
<th>Saskatoon</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NH</td>
<td>CT</td>
</tr>
<tr>
<td>1 Proportion of population with high need of healthcare</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>2 Proportion of Children 0-4 years old</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>3 Proportion of households that Own the dwelling</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>4 Proportion of Lone-Parent Families</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>5 Proportion of aboriginal population</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 Proportion of recent Immigrants (five years)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 Population 15 years and older having no certificate, diploma or degree</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>8 Low Income Cut-offs (LICOs) after tax (Persons)</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>9 Unemployment rate</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OLS Regression - Results

<table>
<thead>
<tr>
<th>City</th>
<th>Unit</th>
<th>R-squared</th>
<th>Adjusted R-squared</th>
<th>Residual Sum of Squares</th>
<th>S.E. of Regression</th>
<th>S.E of Regression ML</th>
<th>S.E of Regression ML</th>
<th>F-Statistic</th>
<th>Prob(F-statistic)</th>
<th>Akaike info criterion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mississauga</td>
<td>NH</td>
<td>0.653</td>
<td>0.587</td>
<td>3.58</td>
<td>0.138</td>
<td>0.371</td>
<td>0.112</td>
<td>0.334</td>
<td>9.81</td>
<td><0.001</td>
</tr>
<tr>
<td></td>
<td>CT</td>
<td>0.119</td>
<td>0.104</td>
<td>42.16</td>
<td>0.346</td>
<td>0.588</td>
<td>0.337</td>
<td>0.581</td>
<td>8.26</td>
<td>0.0004</td>
</tr>
<tr>
<td></td>
<td>DA</td>
<td>0.073</td>
<td>0.069</td>
<td>341.06</td>
<td>0.398</td>
<td>0.630</td>
<td>0.395</td>
<td>0.629</td>
<td>16.92</td>
<td><0.001</td>
</tr>
<tr>
<td>Saskatoon</td>
<td>NH</td>
<td>0.403</td>
<td>0.378</td>
<td>55.36</td>
<td>0.791</td>
<td>0.889</td>
<td>0.748</td>
<td>0.865</td>
<td>15.77</td>
<td><0.001</td>
</tr>
<tr>
<td></td>
<td>CT</td>
<td>0.667</td>
<td>0.641</td>
<td>19.44</td>
<td>0.498</td>
<td>0.706</td>
<td>0.452</td>
<td>0.672</td>
<td>26.05</td>
<td><0.001</td>
</tr>
<tr>
<td></td>
<td>DA</td>
<td>0.289</td>
<td>0.281</td>
<td>352.14</td>
<td>1.033</td>
<td>1.016</td>
<td>1.018</td>
<td>1.009</td>
<td>34.68</td>
<td><0.001</td>
</tr>
</tbody>
</table>
DIAGNOSTICS - OLS REGRESSION

<table>
<thead>
<tr>
<th>City</th>
<th>Unit</th>
<th>Heteroskedasticity Breusch-Pagan Test Value (prob)</th>
<th>Moran's I (prob)</th>
<th>Lagrange Multiplier (lag)</th>
<th>Robust LM (lag)</th>
<th>Lagrange Multiplier (error)</th>
<th>Robust LM (error)</th>
<th>Lagrange Multiplier (SARMA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mississauga</td>
<td>NH</td>
<td>5.855 (<0.001)</td>
<td>0.007</td>
<td>0.681</td>
<td>1.693</td>
<td>0.003</td>
<td>1.014</td>
<td>1.695</td>
</tr>
<tr>
<td></td>
<td>CT</td>
<td>5.869 (<0.001)</td>
<td>0.540</td>
<td>110.069</td>
<td>5.022</td>
<td>105.659</td>
<td>0.612</td>
<td>110.681</td>
</tr>
<tr>
<td></td>
<td>DA</td>
<td>22.125 (<0.001)</td>
<td>0.715</td>
<td>1286.457</td>
<td>43.368</td>
<td>1250.944</td>
<td>7.854</td>
<td>1294.311</td>
</tr>
</tbody>
</table>

Saskatoon	NH	8.738 (<0.001)	0.402	47.154	19.856	27.936	0.639	47.792
	CT	3.028 (<0.001)	0.222	9.313	5.072	4.638	0.397	9.710
	DA	63.412 (<0.001)	0.590	484.301	155.212	331.294	2.205	486.506

COMPARISON (OLS & Spatial Regression between Neighbourhood and Census Tract)

<table>
<thead>
<tr>
<th>City</th>
<th>Unit</th>
<th>Model</th>
<th>R-squared</th>
<th>Adjusted R-squared</th>
<th>Sigma-square</th>
<th>S.E. of regression</th>
<th>F-statistic</th>
<th>Prob(F-statistic)</th>
<th>Akaike info criterion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mississauga</td>
<td>NH</td>
<td>OLS</td>
<td>0.653</td>
<td>0.587</td>
<td>0.138</td>
<td>0.371</td>
<td>9.81</td>
<td><0.001</td>
<td>32.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LAG</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>CT</td>
<td>OLS</td>
<td>0.119</td>
<td>0.104</td>
<td>0.346</td>
<td>0.588</td>
<td>8.26</td>
<td>0.0004</td>
<td>224.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ERROR</td>
<td>0.694</td>
<td>-</td>
<td>0.117</td>
<td>0.342</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Saskatoon</td>
<td>NH</td>
<td>OLS</td>
<td>0.403</td>
<td>0.378</td>
<td>0.791</td>
<td>0.889</td>
<td>15.77</td>
<td><0.001</td>
<td>196.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LAG</td>
<td>0.807</td>
<td>-</td>
<td>0.242</td>
<td>0.492</td>
<td>-</td>
<td>-</td>
<td>132.1</td>
</tr>
<tr>
<td></td>
<td>CT</td>
<td>OLS</td>
<td>0.667</td>
<td>0.641</td>
<td>0.498</td>
<td>0.706</td>
<td>26.05</td>
<td><0.001</td>
<td>95.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LAG</td>
<td>0.766</td>
<td>-</td>
<td>0.318</td>
<td>0.564</td>
<td>-</td>
<td>-</td>
<td>86.7</td>
</tr>
<tr>
<td>Variables</td>
<td>Unit</td>
<td>Model</td>
<td>Mississauga</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---------</td>
<td>-------</td>
<td>-------------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Coefficient</td>
<td>Std.Error</td>
<td>t-Statistic</td>
<td>Coefficient</td>
<td>Std.Error</td>
<td>t-Statistic</td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NH</td>
<td>OLS</td>
<td></td>
<td>7.274</td>
<td>1.352</td>
<td>5.381</td>
<td>1.618</td>
<td>0.298</td>
<td>5.426 (<0.001)</td>
<td></td>
</tr>
<tr>
<td>Spatial</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CT</td>
<td>OLS</td>
<td></td>
<td>0.545</td>
<td>0.126</td>
<td>4.335</td>
<td>2.637</td>
<td>0.374</td>
<td>7.051 (<0.001)</td>
<td></td>
</tr>
<tr>
<td>Spatial</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W_Accessibility</td>
<td>NH</td>
<td>Lag</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lambda/W_Accessibility</td>
<td>CT</td>
<td>Error/Lag</td>
<td>0.907</td>
<td>0.036</td>
<td>25.284 (<0.0001)</td>
<td>0.577</td>
<td>0.122</td>
<td>4.729 (<0.001)</td>
<td></td>
</tr>
<tr>
<td>Proportion of population with high need of healthcare</td>
<td>NH</td>
<td>OLS</td>
<td>-0.121</td>
<td>0.029</td>
<td>-4.234</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Proportion of Children 0-4 years old</td>
<td>NH</td>
<td>OLS</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-0.196</td>
<td>0.054</td>
<td>-3.653 (0.0005)</td>
<td></td>
</tr>
<tr>
<td>Proportion of households that Own the dwelling</td>
<td>NH</td>
<td>OLS</td>
<td>-0.014</td>
<td>0.006</td>
<td>-2.230</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Proportion of Lone-Parent Families</td>
<td>NH</td>
<td>OLS</td>
<td>-0.039</td>
<td>0.013</td>
<td>-2.888</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Proportion of aboriginal population</td>
<td>NH</td>
<td>OLS</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-0.041</td>
<td>0.017</td>
<td>-2.435 (0.0174)</td>
<td></td>
</tr>
<tr>
<td>Population 15 years and older having no certificate, diploma or degree</td>
<td>CT</td>
<td>OLS</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-0.047</td>
<td>0.016</td>
<td>-2.971 (0.0051)</td>
<td></td>
</tr>
<tr>
<td>Low Income Cut-offs (LICOs) after tax (Persons)</td>
<td>NH</td>
<td>OLS</td>
<td>0.119</td>
<td>0.030</td>
<td>3.996</td>
<td>0.084</td>
<td>0.015</td>
<td>5.696 (<0.001)</td>
<td></td>
</tr>
<tr>
<td>Spatial</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CT</td>
<td>OLS</td>
<td></td>
<td>0.038</td>
<td>0.010</td>
<td>3.893</td>
<td>0.119</td>
<td>0.015</td>
<td>7.805 (<0.001)</td>
<td></td>
</tr>
<tr>
<td>Spatial</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unemployment rate</td>
<td>NH</td>
<td>OLS</td>
<td>-0.220</td>
<td>0.072</td>
<td>-3.063</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>
LOW INCOME CUT-OFFS (LICOs) AFTER TAX (PERSONS)
LOCAL INDICATORS OF SPATIAL AUTOCORRELATION

3SFCA Accessibility Cluster Map (LISA)

Neighbourhoods
- Not Significant
- High-High
- Low-Low
- Low-High
- High-Low
- No Population

Census Tracts
- Not Significant
- High-High
- Low-Low
- Low-High
- High-Low
- No Population

Dissemination Areas
- Not Significant
- High-High
- Low-Low
- Low-High
- High-Low
- No Population

Moran's $I = 0.676$
p value = 0.002

Moran's $I = 0.527$
p value = 0.002

Moran's $I = 0.868$
p value = 0.002

Saskatoon

Mississauga

Moran's $I = 0.002$
p value = 0.610

Moran's $I = 0.576$
p value = 0.002

Moran's $I = 0.762$
p value = 0.002

Mississauga
CHILDREN 0-4 YEARS OLD

Neighbourhoods
- 7.3 - 12.1
- 6.0 - 7.2
- 5.1 - 5.9
- 4.0 - 5.0
- 0.6 - 3.9
- No Population

Census Tracts
- 7.0 - 9.4
- 5.9 - 6.9
- 5.1 - 5.8
- 4.1 - 5.0
- 0.6 - 4.0
- No Population

Dissemination Areas
- 7.2 - 14.0
- 5.7 - 7.1
- 4.8 - 5.6
- 3.7 - 4.7
- 0.0 - 3.6
- No Population

Saskatoon
Mississauga
Saskatoon
Mississauga
Saskatoon
Mississauga
POPULATION WITH HIGH NEED OF HEALTHCARE

Neighbourhoods

- 46.1 - 72.8
- 42.4 - 46.0
- 38.5 - 42.3
- 36.9 - 38.4
- 28.3 - 36.8
- No Population

Census Tracts

- 44.7 - 60.9
- 42.0 - 44.6
- 39.7 - 41.9
- 37.7 - 39.6
- 32.8 - 37.6
- No Population

Dissemination Areas

- 46.2 - 84.2
- 41.2 - 46.1
- 37.5 - 41.1
- 34.6 - 37.4
- 26.9 - 34.5
- No Population

Saskatoon

Mississauga
HOUSEHOLDS THAT OWN DWELLING

Neighbourhoods
- 89.8 - 100.0
- 74.6 - 89.7
- 64.1 - 74.5
- 45.4 - 64.0
- 5.9 - 45.3
- No Population

Census Tracts
- 80.9 - 96.5
- 71.7 - 80.8
- 59.4 - 71.6
- 47.2 - 58.3
- 16.7 - 47.1
- No Population

Dissemination Areas
- 92.7 - 104.5
- 81.9 - 92.6
- 66.0 - 81.8
- 40.1 - 65.9
- 0.0 - 40.0
- No Population

Saskatoon

Mississauga
COMPARING DIFFERENT REGRESSION MODELS

<table>
<thead>
<tr>
<th>City</th>
<th>Unit</th>
<th>Akaike info criterion (AIC)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Linear Regression (OLS)</td>
<td>Spatial Regression (Lag & Error)</td>
<td></td>
</tr>
<tr>
<td>Mississauga</td>
<td>NH</td>
<td>32.7</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CT</td>
<td>224.9</td>
<td>123.1*</td>
<td></td>
</tr>
<tr>
<td>Saskatoon</td>
<td>NH</td>
<td>196.5</td>
<td>142.1**</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CT</td>
<td>95.6</td>
<td>86.7**</td>
<td></td>
</tr>
</tbody>
</table>

* Spatial Error Regression
** Spatial Lag Regression
Negative residuals – actual values are smaller than estimated values

Positive residuals – actual values are larger than estimated values

Moran’s I = 0.100 (p = 0.076)

Moran’s I = 0.041 (p = 0.220)

Moran’s I = 0.007 (p = 0.583)

Moran’s I = 0.152 (p = 0.002)
CONCLUSION

• It is concluded that multivariate spatial regression can be used effectively in the Spatial accessibility to healthcare research as it may provide a great local insight to the varying relationships.

• One should not use conclusions derived from data at one spatial units to units at another.

• This research contributes to the existing body of literature on health care accessibility and highlights the importance of choosing an appropriate neighbourhood definition.