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The stereographic projection, used in ancient times, and Mercator’s pro-
jection, developed in the sixteenth century, were early examples of conformal,
or angle-preserving projections. The term proiecto conformalis was not in-
troduced until 1789 ([Youschkevitch, 1991], p. 746), but, as we shall see, the
ideas were in place with the work of Lambert about fifteen years prior.

1 The Stereographic Projection

The stereographic projection, or planisphere, may have been known in an-
cient Egypt [Keuning, 1955]. Synesius of Cyrene attributes its discovery to
Hipparchus ([Heath, 1981], p. 293). Ptolemy’s Planisphaerum describes its
use, but in astronomy, not geography; in fact this projection seems to have
been used exclusively for star charts and astrolabes until the Renaissance.

The planisphere has two appealing geometric properties. First, all circles
on the sphere (both great circles and small circles) are carried into circles
(or exceptionally into straight lines) on the plane. This property, a simple
consequence of Apollonius’ work on subcontrary cutting planes (e.g., Book
I, Prop. 5, of the Conics), was apparently known to Ptolemy, although he
gave no general proof.

About 1500, the stereographic function began to be widely used and
popular for geographic maps [Keuning, 1955]. Lagrange [Lagrange, 1778]
stated that “most modern Geographers” used it to construct their maps.
This may have been because it was so easy to construct. Since all meridians
and parallels were circles, one needed to find only (as Lagrange pointed out)
three points on each to trace its entire curve.

The second property of the planisphere, apparently unknown to Ptolemy,
is that the projection preserves angular measure. That is, if two great circles



on the sphere intersect at a given angle, then their images on the plane
(which, by the first property, are circles or lines) intersect at the same angle.
The fact can be proved without calculus, and is left as an exercise for the
reader, with the following hints:

1. Without loss of generality, assume that one of the two great circles is
a meridian. The other great circle is either a meridian (in which case
the problem is trivial) or is inclined at an angle ¢ to the meridian.

2. The image of the second great circle is a planar circle C whose radius
is csc ¢.

3. the distance of the center of C from the origin on the plane (the image
of the pole) is cot ¢.

2 Mercator

As the compass came into use in the late Middle Ages, ship captains began
sailing out of sight of coastal landmarks, navigating by keeping their ships
on a constant compass bearing (a constant angle between the ship’s direction
and the local meridian). Unless the direction is straight north, south, east,
or west, the curve (called a rhumb line or loxodrome) traced out by a ship
on a constant compass heading is represented on the globe by a line which
spirals logarithmically toward each pole.

A loxodrome is not a great circle. Pedro Nunez proved this in 1537 in
his Tratado de Esphera. We do not know whether the Flemish mapmaker
Gerard Mercator ever heard about the works of the Portuguese geometer.
But by 1541, Mercator found a way to draw accurate loxodromes on a globe,
and, eventually, to transfer them to a straight line on a sheet of paper. In
1569, he published his famous world map, with the Latin title A new and
enlarged description of the earth, with improvements for use in navigation.

We do not know how Mercator actually constructed the map. He certainly
used graphic instruments, since tables of secants were not yet available. One
plausible theory, advanced by Nordenskiold [Keuning, 1955], was that Mer-
cator divided the surface of the globe into zones of latitude ten degrees wide.
While (graphically) transferring each zone to the plane, he scaled the length
so that it matched the length of the equator, and then scaled the width of the
zone by the same amount. On a globe of unit equatorial circumference, this



would mean that a zone about the circle of parallel at latitude ¢ would need
to be enlarged by sec ¢, and the parallel would be represented by a straight
line at constant ordinate

0.5-sec¢-z+Zsecd}-z,
<o

where z represents the width of each zone. Mercator used z = 10°; by taking
limits as z goes to zero, we get the Mercator projection M from a point iat
latitude ¢, longitude X\ on the sphere as

¢
M, (p,\) = A, My(p,\) = /0 sec ¢ dg.

(Of course, on a real map, the planar coordinates M,, M, would be scaled
and shifted in some appropriate fashion.)

We close this section with a curiosity worth mentioning, although it would
not have been recognized until the nineteenth century. If, like Riemann, we
view the codomain of the stereographic projection S as the Argand plane of
complex numbers, then (projecting from the north pole to the plane tangent
at the south pole)

S(¢, \) = tan G + g) - exp(i)).

The Mercator projection becomes

¢
M(p,N) :)\+i-/ sec ) dip
0

. T ¢
=\A+i-Int — 4+ =
) nan(4 2),

so that (modulo a reflection through the real axis), the Mercator projection
is ¢ times the complex logarithm of the stereorgraphic projection.

3 Lambert

Sailors gradually discovered the advantages of Mercator’s projection and
came to use it exclusively for their nautical charts (in fact it is still used
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today). However, it was apparently not until the early eighteenth century
that serious attention focussed on the problems of terrestrial cartography.
Perhaps this came about in part because of the foundation of modern nation-
states, with their need to map large areas acccurately, both for taxation and
for warfare. The invention of the telescope made accurate surveying possi-
ble; also, by observation of the moons of Jupiter, accurate measurements of
longitude (on land, at any rate) became possible. As long sea voyages be-
came common, travelers began to report that pendulum clocks consistently
ran slow near the equator. Newton suggested that perhaps the earth was not
quite spherical; that it bulged slightly at the equator and thus the force of
gravity was less there. The theory was confirmed after a French expedition
to Ecuador in the 1730s.

Johann Heinrich Lambert published his Anmerkungen und Zusdatze zur
Entwerfung der Land und Himmelscharten in 1772. This strikingly origi-
nal work is considered the foundation of modern mathematical cartography.
Lagrange gives Lambert credit as the first to characterize the problem of
mapping from a sphere to a plane, while preserving some given property,
in terms of nonlinear partial differential equations. The technique was as-
toundingly fruitful, for he invented several whole families of conformal and
equal-area projections, some of which are still in widespread use today. Lam-
bert also seems to have been the first to take account of the ellipsoidal, rather
than spherical, shape of the earth.

We shall look in some detail at his development of a projection now called
Lambert’s Conformal Conic, then briefly examine another projection called
the Transverse Mercator.

In a section subtitled ”More General Method to Represent the Spherical
Surface so that All Angles Preserve their Size,” Lambert begins:

“Stereographic representations of the spherical surface, as well
as Mercator’s nautical charts, have the peculiarity that all angles
maintain the sizes that they have on the surface of the globe. This
yields the greatest similarity that any plane figure can have with
on drawn on the surface of a sphere. The question has not been
asked whether this property occurs only in the two methods of
representation mentioned, or whether these two representations,
so different in appearances, can be made to approach each other
through intermediate stages. Mercator represents the meridians
as parallel lines, perpendicular to the equator. .. Contrastingly, in



the polar case of the stereographic projection, the same straight
meridians intersect at the proper angle. Consequently, if there
are stages intermediate to these two representations, they must
be sought by allowing the angle of intersections of the meridians
to be arbitrarily larger or smaller than its value on the surface of
the sphere. This is the way in which I shall now procede.”

In other words, Lambert proposes to investigate conic projections. These
have a history dating back at least to Ptolemy’s Geography, which describes
(more or less) an “equidistant” conic projection, in which all the parallels of
latitude are equally spaced. Conic projections preserve scale along parallels
of latitude, and thus are well suited for regions of the globe which extend
east-west rather than north-south. In the eighteenth century, the equidistant
conic was apparently rediscovered by Nicolas DeLisle, Euler’s colleague at St.
Petersburg, and used for the 1745 atlas of Siberia.

Lambert considers the representation M on the plane of a spherical point
with colatitude €. Let P be the representation of the pole, u be a point at
the same latitude as M, such that the angle M Pp is “infinitely small.” Since
this is an angle between the representations of two meridians, and since there
is assumed to be a constant ratio m between the angles of meridians on the
sphere and their representations on the plane, we can also write this angle as
m times the difference in longitudes d\. Finally, let N be the representation
of a point on the same meridian as M but with colatitude € 4 de, and v be
the point which completes the trapezoid.

If uM Nv is to be similar to the spherical figure it represents, then it must
preserve the same proportion of sides:

uM  dXsine
MN — de '’
or, if we set PM = x, M N = dx, so that
Mp=x-/MPupu=xmd\,

then (3) becomes
mxd\  dAsine or de _ mde

dx de xr  sine
Lambert now integrates both sides to obtain

1
Inz = mIntan 56.

[Tobler(tr), 1972], p. 28



If we now assume that = takes the value 1 when M represents a point on the
equator (this is only a matter of scale), then the constant C' must be zero,

so that c\m
T = (tan—) .
2

Lambert observes that the case m = 1 corresponds to the stereographic pro-
jection. By rewriting (3) in terms of the latitude ¢ rather than the colatitude

€, he obtains:
1—tan2\"
r = tan™ (E—?) = —2
4 2 1+ tan %
Using the (infinite) binomial expansions of both numerator and denominator,
he obtains, (in modern notation):

1 1
T = (1—mtan?+mm—tan2?—~-) . (1—mtan?+mﬁtan2?—-~)

2 2 2 2 2 2
1 1
=1-—-2m (tan?—l——tang?—i-—taﬁ?

2
p Tt g Tty >+dm%

and from this he shows that the expression approaches the Mercator projec-
tion as m approaches 0.

Lambert goes on to consider another family of conformal projections in
which both meridians and parallels are represented as circular arcs. He then
attempts to give the most general possible solution to the conformal condi-
tion. He considers the following system:

dy = M dé + m d\
dz = N dé +nd\

where M, N, m, and n are unknown functions of ¢ and \. Geometric con-
siderations, similar to those above, lead to the two conditions

Mcos¢p =n, —Ncos¢p=m.

Lambert shows that the Mercator and stereographic projections fit this frame-
work, but is unable to find a general closed-form solution. He mentions a
method of solution which he credits to Lagrange. But “since one eventu-
ally relies on infinite series using this procedure, I return directly to the two



differential equations.” Finally, he gives y as the doubly infinite series:

y=A +BA +ON + - -
+ A'sing +B'Asing +C'Nsing+ ---
+ A" sin2¢ +B"\sin 2¢ +C” sin \? sin 2¢ + - - -
+ A" sin 3¢+ B" A sin 3¢p+C"" sin \?sin 3¢ + - - -

and x as a doubly infinite series in terms of cosk¢. Lambert computes
more than thirty of the coefficients, and gives an explicit formula for finding
(recursively) all coefficients of terms involving the first five powers of A.

The prodigious labor pays off when Lambert looks for a conformal map on
which the equator and central meridian are both straight lines, and parallels
intersect the central meridian at equal intervals. By manipulating the infinite
series, and then “summing from below,” he finds

sin 2¢tan% A
1 — cos 2¢tan2%/\
1 1+ 2tan s\ cos @ + tan? 2
y=gh (1 — 2tan%/\cos¢+tan2 %)\)

xr = ¢ + arctan

2

Not simple, perhaps, but at least in closed form. This is the sideways, or
transverse, version of the Mercator projection, in which the circle of true
scale is a meridian rather than the equator. It does not map loxodromes to
straight lines, and most circles on the globe become transcendental curves.
Nevertheless, it has turned out to be enormously practical for maps of small
regions, both because of good error control, and because adjacent regions
north to south can be tiled together. The “Transverse Mercator”, with ad-
justments, also given by Lambert, for the ellipsodial shape of the earth, is
today the most widely used projection for large scale maps in the United
States.

Afterword

This paper was written with the hope that it might be useful to two audiences:
those who will not read the original authors, but want a summary of the ideas,
and those who do want to read the originals, and would like a guide to the
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main ideas. To the extent possible, I have tried to follow the original notation,
with some minor concessions to make it easier on the modern reader, e.g. 22
in place of zz, “In” in place of “log”, and so forth. The illustrations are
copies of those in the original works.
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