

A methodology for determining the precision of well location datasets

Donald W. Downey, Earth Scientist, GGIS Team

ChevronTexaco Exploration & Production Technology Company (EPTC) Subsurface Characterization Business Line Geological & Geophysical Interpretation Services Team 6001 Bollinger Canyon Road, C-1188 San Ramon, CA 94583-0946 *California RG #7487 Texas RG #1539 AAPG CPG #5838 Landmark Certified Customer Support for ZMap+™ and StratWorks™*

25th Annual ESRI International User Conference Petroleum I Session July 26, 2005

ETC – G&G Interpretation (SR) 25th Annual ESRI International User Conference

Introduction

- The advent of global positioning satellites and geographical information systems has increased the accuracy of spatial measurements by orders of magnitude.
- The luxury of these accurate measurements may induce us to forget some basic cartographic principles of data precision which govern older spatial datasets.
- A study of 700+ well locations from Iraq show that data rounding and truncation, not cartographic datum shifts are the most likely source of well location errors.

Value of Determining Precision

Select "best" well location from several well location datasets

Eliminate duplicate well locations and resulting overposting of well picks

Quantify area of uncertainty around well location for well correlation ties

Process to quantify well location precision

 Data-entry, reformatting and data storage conversion into a standard dataset

We need to create a standardized spreadsheet so we can line up the fields and compare data!

Standardized Spreadsheet

<u>Refno</u>	OW_well	OW_lat	OW_lon	CRS	<u>X</u>	<u>Y</u>
VB624 2	Wellname-1A	36.6111111	41.886111 1	IRAQ NAHRWAN (QGPC 1992) UTM38N CM 45E	221483.5 8	4055958.7 2
VB595 6	Wellname-1	32.3833830	47.390908 0	IRAQ NAHRWAN (QGPC 1992) UTM38N CM 45E	724924.8 1	3585174.5 0
VB611 3	Wellname-10	32.3326128	47.442045 4	IRAQ NAHRWAN (QGPC 1992) UTM38N CM 45E	729865.3 1	3579653.5 0
VB611 4	Wellname-11	32.3617853	47.422257 4	IRAQ NAHRWAN (QGPC 1992) UTM38N CM 45E	727929.0 0	3582846.0 0
VB611 5	Wellname-12	32.3934474	47.384490 0	IRAQ NAHRWAN (QGPC 1992) UTM38N CM 45E	724296.0 0	3586277.0 0
VB611 6	Wellname-13	32.3816007	47.402350 7	IRAQ NAHRWAN (QGPC 1992) UTM38N CM 45E	726006.0 0	3585001.0 0
VB595 7	Wellname-2	32.4424543	47.328282 9	IRAQ NAHRWAN (QGPC 1992) UTM38N CM 45E	718889.1 9	3591594.5 0
VB595 8	Wellname-3	32.3538982	47.410763 5	IRAQ NAHRWAN (QGPC 1992) UTM38N CM 45E	726866.8 8	3581947.0 0
VB595 9	Wellname-4	32.4704527	47.276368 2	IRAQ NAHRWAN (QGPC 1992) UTM38N CM 45E	713941.1 9	3594593.7 5

Geos

geos v1.0 Cop	yright(2002) Chev	ronTexaco Corporation	- All Rights Reserve	ed		
File Options	Projections	DatumShift File	Listing Batch	Processing H	lelp	
Input Type	Lat/Lon	С х/х	Projection			
Latitude			Longitude			
Transform						
				Geod	etic Solutions	×
				i	This is Version 1.0 (fix 1) of the geos application 03/2003 For Technical questions contact Chuck Clancy - ITC GIS/Remote Sensing Team	
					For Application questions contact Diana Rathbun - EPTC IPDS Team	
					ОК	

Analysis of well location datasets

 Match wellnames between datasets
Use SQL or Access to match wellnames between datasets
Create table of OpenWorks REFNOs versus wellnames for external datasets

Microsoft Access

Process to quantify well location precision

2. Calculate distance and bearing between datasets This allows us to differentiate: 1. typographical errors 2. geodetic datum shift errors 3. "close-enough" within tolerance 4. duplicates – exact matches

Distance and Bearing of well location datasets

Distance and Bearing of well location datasets

Pga well locations query.dbf OW locationsAll well locations query.dbf IHSIhs well locations query.dbf fields.shp Gae

> Chevron ETC G&G Interpretation – San Ramon 25th Annual ESRI International User Conference

Data analysis - finding overlapping (duplicate) well locations and typographical errors

Excel Pivot-table

Sort dataset by latitude and longitude

- Sort by error distance in meters
- View wells with field outlines

Need to correct the typos in each dataset first, then run geodetic datum and data precision analysis

Example of well location error analysis – Typographical errors

REFNO	Wellname	Latitude	Longitude	Duplicate?
			v	-
V/D6217		21 10261111	10 6170000	
V D0317		34.40301111	40.04722222	LAT SAME
VB6318	Well-2	34.48361111	44.6425	LAT SAME

Spot the "heavy-hitters"

Well 368km off due to typo Use IHS location

Geodesy – know the datum shifts in your area

Datum: Nahrwan 1967 Ellipsoid : Clarke 1880 RGS Semi-major axis : 6378249.145 meters Flattening inverse : 293.465

Datum shift parameters:

Nahrwan 1967 to WGS84 (Brown and Root for QGPC 1992)

dX = -250.20 meters

dY = -153.09 meters

dZ = +391.700 meters

(Molodensky transformation – already in ArcGIS as Nahrwan_1967_To_WGS_1984_5)

Map projection:

Universal Transverse Mercator -Zone 38 North

Longitude of Origin : 45 deg 00' E

Latitude of Origin : 0 deg

False Easting : 500,000 m

False Northing : 0 m

Scale Factor: 0.9996

Datum / Ellipsoid : Nahrwan 1967 / Clarke 1880 RGS

Datum shift example – Brazil Offshore

Geodetic Parameter Detection and Troubleshooting Using Enhanced Landsat Imagery

Image Un-shifted

Chevron ETC G&G Interpretation – San Ramon 25th Annual ESRI International User Conference

Geodetic Parameter Detection and Troubleshooting Using Enhanced Landsat Imagery

Image Shifted to Nahrwan - Digitized well locations

Chevron ETC G&G Interpretation – San Ramon 25th Annual ESRI International User Conference

Geodetic Parameter Detection and Troubleshooting Using Enhanced Landsat Imagery

Image Shifted to Nahrwan -300+ refined and verified well locations determined by SR GIS/RS contractor. Process to quantify well location precision

3. Data precision analysis

Data rounding and truncation, not cartographic datum shifts are the most likely source of well location errors

IHS Coordinate Quality

Coordinate Quality	<u>Total</u>
Approx to 1 degree	5
Approx to 1 minute	722
Approx to 1 second	146
Approx to 10 minutes	92
Approx to 10 seconds	746
Approx to 20 minutes	2
Approx to 30 minutes	25
Approx to 30 seconds	208
Approx to 45 minutes	2
Approx to 5 minutes	69
Approx to 5 seconds	520
field centre *	1243
field discovery well	2715
platform centre	42
provisional coords	9
Reliable coords	4238
Reliable with datum **	15494
Unreported coords	1
Grand Total	26316

"field centre"
coordinates create
overposting of well
picks in map view

 Unless the data is labeled "Reliable with datum" the well location is suspect

Data Precision Analysis Background

- If the well location coordinates do not reflect the modern GPS standard of sub-meter accuracy, the well locations were measured using traditional survey methods and/or approximated from maps.
- For example, if latitude is given as 35.350000°, it is unlikely that the well was exactly located at by GPS because a location measured by a GPS unit would display greater precision such as 35.3500001°.
- Calculation and digital storage of well locations results in *rounding and truncation* errors (especially among inexperienced Excel users!)

Lengths of latitude table

Using the lengths of each latitude and longitude number string for the three data storage formats, an index of lengths of data strings (zeros to right suppressed) versus data precision was built.

Multiplying the latitude and longitude data precision for each well location coordinate by the lengths of a degree of latitude and longitude at each latitude, an estimate of the maximum rounding error in meters is calculated.

Latitude	Meters/deg	Meters/sec
0-1	110,567	30.71
1-2	110,568	30.71
2-3	110,569	30.71
3-4	110,571	30.71
4-5	110,574	30.72
5-6	110,578	30.72
6-7	110,582	30.72
7-8	110,586	30.72
8-9	110,592	30.72
9-10	110,598	30.72
10-11	110,605	30.72
11-12	110,612	30.73
12-13	110,620	30.73
13-14	110,628	30.73

Decimal Degrees

<u>Interval</u>	<u>Format</u>	<u>Meters per</u> degree	Precision (m)	<u>Length</u>	Degree%
DD	36	100,000	100000.00	2.00	1
DD.D	36.5	100,000	10000.00	4.00	1/10
DD.DD	36.55	100,000	1000.00	5.00	1/100
DD.DDD	36.555	100,000	100.00	6.00	1/1000
DD.DDDD	36.5555	100,000	10.00	7.00	1/10000
DD.DDDDD	36.55555	100,000	1.00	8.00	1/100000
DD.DDDDDD	36.555555	100,000	0.10	9.00	1/1000000

Degrees Minutes Seconds

<u>Interval</u>	<u>Format</u>	Meters per degree	Precision (m)
10 minutes	36:30	100,000	16666.67
1 minute	36:35	100,000	1666.67
10 seconds	36:30:30	100,000	277.78
1 second	36:30:35	100,000	27.78
.1 second	36:30:35.5	100,000	2.78
.01 second	36:30:35.55	100,000	0.28
.001 second	36.30:35.555	100,000	0.03

Easting/Northing (X/Y Coordinates)

The possible error distance in meters due to lack of data precision can be calculated directly from the length of the X and Y coordinates.

<u>Format</u>	Precision (m)
500000	100000
550000	10000
555000	1000
555500	100
555550	10
555555	1
555555.5	0.1
555555.55	0.01
555555.555	0.001

Example calculation of degree length

For example, for a well location in DMS which only has precision to the minutes scale (Latitude = 36° 20' 00"), the possible rounding/truncation error is equal to 1/60th of the length of a degree of latitude at 36° 20' (or ±1 minute precision).

At this latitude the length is 90,166m, the length of a minute is 1502m and the maximum possible rounding error of the location is 3005m.

Rounding versus Truncation

Truncation looses a unit of precision, rounding has rules for data precision, but...

Rounding versus Truncation – 35.5°

<u>Lat</u>	Lat truncated	Lat rounded
35.44	35.4	35.4
35.45	35.4	35.5
35.46	35.4	35.5
35.47	35.4	35.5
35.48	35.4	35.5
35.49	35.4	35.5
35.50	35.5	35.5
35.51	35.5	35.5
35.52	35.5	35.5
35.53	35.5	35.5
35.54	35.5	35.5
35.55	35.5	35.6
35.56	35.5	35.6
35.57	35.5	35.6
35.58	35.5	35.6
35.59	35.5	35.6
35.60	35.6	35.6
35.61	35.6	35.6

The magnitude of the effects of data rounding and truncation are the same.

If we don't know the rules (rounding or truncation) that were applied to the dataset - the effects indistinguishable.

Generate a number to quantify the amount of data precision in meters

Look for the heavy-hitters so you can label the locations with quality flags before interpretation.

Buffer features in ArcGIS

Types of duplicate well locations

•Wells where both latitude and longitude are identical

- "Field-center coordinates"
- Copies of previous wells
- •Wells where either latitude and longitude are identical
 - Precisely measured well-spot pattern?
 - Moved well X or Y location to prevent duplicate wells?

Duplicate wells locations example

- 1. Sort the well location spreadsheet by latitude
- 2. Subtract one cell by the next cell to identify duplicates
- 3. Repeat process for longitude
- 4. Create a sub-table of duplicate well locations for a field
- Display the map view and add annotation and lines tying each duplicate well location

Example of duplicate well locations – Field center coordinates

<u>REFNO</u>	<u>Wellname</u>	Latitude	Longitude	Duplicate?
VB6273	Well-1	33.89166667	44.20833333	LAT/LON SAME
VB6274	Well-2	33.89166667	44.20833333	SAME

Use PGA for Well-1?

Example of duplicate well locations – Offset wells

<u>REFNO</u>	<u>Wellname</u>	Lat	Lon	<u>Notes</u>
VB6361	Well-1	35.9	43.1375	LON SAME
VB6365	Well-5	35.90416667	43.12083333	LON SAME
VB6366	Well-7	35.88333333	43.1375	LON SAME
VB6367	Well-8	35.89166667	43.125	LON SAME
VB6368	Well-10	35.91944444	43.125	LON SAME
VB6370	Well-12	35.90416667	43.15277778	LON SAME
VB6371	Well-14	35.89583333	43.15833333	LON SAME
VB6372	Well-18	35.87916667	43.1625	LON SAME
VB6373	Well-20	35.875	43.15277778	LON SAME
VB6374	Well-21	35.9	43.15833333	LON SAME
VB6375	Well-22	35.88333333	43.14722222	LAT SAME
VB6377	Well-24	35.90416667	43.1625	LON SAME
VB6378	Well-25	35.89583333	43.10833333	LAT SAME
VB6380	Well-27	35.89166667	43.17083333	LAT SAME
VB6381	Well-28	35.88333333	43.125	LON SAME

Process to quantify well location precision

4. Generate Comments/Remarks; generate Actions to perform on dataset to create load file

Sit down with geologist working the area, look at output from the data analysis and write comments

Comments to Actions and REMARKS

Comment	<u>Count</u>
No change	443
Unresolvable	37
Rounded IHS, keep OW	36
None rounded, PGA as alternate location, confirm later with field maps or satellite	
Падегу	35
Duplicate locations, need to find map of field or confirm with satellite imagery	26
PGA rounded, keep OW	12
OW rounded, no IHS or PGA, no other source	12
IHS rounded, keep OW	11
Rounded OW, use IHS	9
PGA well copy	8
None rounded, look to the satellite imagery for location	8
OW, IHS rounded, unresolvable	7

OpenWorks data model – WELL_MASTER

PREFERRED_SURF_LAT PREFERRED_SURF_LON PREFERRED_X_COORD_SURF(IE1) PREFERRED_Y_COORD_SURF(IE2) PREFERRED_BH_LAT PREFERRED_BH_LON PREFERRED_X_COORD_BH(IE3) PREFERRED_Y_COORD_BH(IE11) ORIG_X_LON ORIG_Y_LAT ORIG_BH_X_LON ORIG_BH_Y_LAT

WELL_ID DATA_ACQ_CO_ID DATA_ACQUISITION_TYPE DATA_SOURCE * WELL_NAME_FREE(IE5) PLOT_NAME ORIG_CRS_ID * ORIG_BH_CRS_ID REMARK *

See also WELL_MASTER_ALT

What is the value of this exercise?

 Need to determine from multiple set of well location which location will be used in OpenWorks

•Need to identify duplicate well locations tied to different wells (i.e. "field center coordinates")

Need to quickly identify typographic errors

 Need to estimate precision quality of well locations

Notes - Word Document (double-click to open)

A methodology for determining the precision of well location datasets

Don Downey Chevron Energy and Technology (ETC) Landmark Certified Customer Support – ZMap+™, StratWorks™

For: 25th Annual ESRI International User Conference Petroleum I Session July 26, 2005

Data Management Overview

The advent of global positioning satellites and geographical information systems has increased the accuracy of spatial measurements by orders of magnitude. The luxury of these accurate measurements may induce us to forget some basic cartographic principles of data precision which govern older spatial datasets. A study of 700+ well locations from Iraq show that data rounding and truncation, not cartographic datum shifts are the most likely source of well location errors.

Data analysis was used to select the "best" well location from several well location datasets. We also wanted to eliminate duplicate well locations and the resulting overposting of picks. Quantification of the area of uncertainty around well location was used to label the well locations used for stratigraphic correlations.

For those of us old enough to remember traditional land surveying methods will remember that many of the well location coordinates were approximated or proposed coordinates and were used for final coordinates on field prints of well log headers. We had to keep in mind the precision of the well locations.

There was a lot of data, so we needed an automated solution, or at least an automated presentation of the data analysis. This allowed us to combine the data analysis results with our knowledge of the area to make choices about which dataset to use for each well location. This study identified which well locations from five vendor datasets was input into the OpenWorks database (one set of well locations that is used in SeisWorks and StratWorks interpretations). There was a need to identify duplicate well locations tied to different wells (i.e. "field center coordinates"), identify typographic errors and estimate the precision quality of the well locations.

Before undertaking a data management project, there are some "givens" that govern the process. The business unit owns the data. There is no IT group doing data cleanup "behind-the-scenes". Each request for data management needs a statement of the value, agreed workplan and charge code. In addition, each business unit is responsible for data standards such as consistent wellnames, log curve name and filing reference numbers.