Integration of GIS, Asset Management and Call Center Technology

Presented by:
Steve Sherman
City of Greensboro
Agenda

- Background on Greensboro’s project environment
- Asset Management project
- GIS Integration
- Call Center Integration
- Project Challenges
Project Background: Scope

- Population: ±220,000
- Area: 120 sq. mi.
- Typical range of municipal services
- Roughly 2,800 employees
- FY 2004-05 Budget of $350M

- Included in Project:
 - Transportation
 - Storm Water
 - Solid Waste
 - Water and Sewer
 - Parks and Recreation
 - Building Maintenance

- Excluded from Project:
 - Building Inspections
 - Fleet Maintenance
Project Background: Objectives

- Create single enterprise-wide asset management system, including:
 - Infrastructure (pipes, streets, playgrounds)
 - Buildings maintenance, plant operations (water/sewer)

- Integration of:
 - GIS
 - Datastream 7i (Work Order/Asset mgmt)
 - One Call Center
 - Lawson ERP (Inventories, HR, Financials)

- Project “Driver:” Improved customer service
Project Background: GIS

ESRI Environment
- ArcMap 9.0
- ArcSDE (SQL Server)
- ArcIMS
- Enterprise wide, centralized GIS management

System Metrics
- Roughly 100 users of ArcMap
- Numerous ArcIMS users
- ±200 SDE Layers
 - 104,000 address points
 - 17,000 street segments
 - 90,000 parcels
 - 50,000 storm water inlets
 - 45,000 street signs
Project Background: Datastream

Asset Management Environment
- Datastream 7i Extended
- SQL Server
- GIS Module
- Databridge (integration with ERP inventories, etc.)
- Web Services (integration with One Call Center)
- Datastream 7i Mobile

System Metrics
- Current Datastream 7i features: ±500K
- Ultimate number of Datastream 7i features: ±1.5M (estimated)
- Number of concurrent daily users: ±50
- Average number of work orders entered weekly: 1100
Project Background: Call Center

Contact Center Environment
- Developed in-house (ASP.NET)
- SQL Server (on Enterprise SQL Servers)
- Enterprise application servers (Windows2003)
- Integrated with Cisco VoIP telephones

System Metrics
- 8 CSR’s handle 530 calls/day
- Source for 75% of work orders
- 450 phone numbers reduced to “373-CITY”
- Customer Hold Times
 - Before: (departmental centers) Avg. 73 sec
 - Today: Avg. 6 sec.
- Abandon Rates
 - Before: (departmental centers) Avg. 15.9%
 - Today: Avg. 3.2%
Project Background: ERP

ERP Environment

- Lawson
 - Financials
 - HR
 - Procurement
 - Inventory
- IBM AIX based servers
- Oracle RDBMS
Integrating: GIS and Asset Management

Goals

- GIS doesn’t manage assets; but GIS provides an inventory of what and where the municipality has assets
- Provide supervisors with a map “front end” into asset inventory
 - Identify/Select assets for maintenance
 - Identify location of active/past work orders
- Allow for spatial analysis of work order trends
- Accomplished through Datastream’s GIS module
Goals

- Provide citizens a single point of contact for all non-emergency service needs
 - Information
 - Comments
 - Service/work request
- Provide CSR’s a single application
 - Eliminate need to know multiple standalone applications
 - Ease of training
Integration Model

GIS
- Location of assets
- Spatial trend analysis

Datastream
- Work orders
- Maintenance history
- Preventive maintenance
- Materials

Contact Center
- Knowledge database
- Customer database
- Contact/Call tracking

Asset Location/Selection

Work Order Creation

Asset Location/Selection

Work Order Follow-up

Inventory

Lawson ERP
Contact Center Application

- Custom written by City MIS
- Modules
 - Knowledge base (every CSR is an “expert”)
 - Customer contact management (under construction)
 - Call tracking
- Datastream integration
 - Work order creation
 - Work order retrieval
- GIS map integrated throughout application
Web services allow programs written in different languages on different platforms to communicate in a standards-based way via XML documents.

XML documents contain:
- "Start tag" – defines what’s coming
- "End tag" – concludes the document
- "Content" – the information between the two tags
 - Elements can be annotated with attributes that contain metadata about the element and its contents

Web Services allows “disconnected” participating system upgrades
Contact Center Application

- Call Entry Form
- CSP: Recent Calls
- GIS Map and Knowledge Database Window
- Community Events List
- "Top Ten" Daily Issues
- Bulletin Board of City News
Asset Management Challenges

- Business process review
- Hierarchies
- Data Acquisition
- Data Maintenance
Defining Business Processes

- **Challenge:**
 - Few processes are documented
 - Most handed down from generation to generation

- **Approach:**
 - Analysts ride/interview supervisors & crew leaders
 - Heavy emphasis on being in the field and seeing work
 - Ultimately conducted several rounds of hands-on prototyping with users

- **Outcome:**
 - Flow chart/documentation that mapped to Datastream via combinations of problem codes and job status codes
 - Users often described more structure to workflow than actually there – needed to do more end user prototyping
Hierarchies

- **Challenge:**
 - Used to define relationships for cost roll-ups and reporting
 - Motor → Pump → HVAC → Building
 - Easy to misinterpret coincidental location as relationship
 - Sidewalks → Street Segment
 - Street lights → Addresses

- **Approach:**
 - Only true child/parent relationships modeled
 - Spatial analysis via GIS collects coincidental relationship costs, etc.

- **Outcome:**
 - Extensive hierarchy diagram
 - Contributed to data loads
Initial Data Acquisition

- **Challenge:**
 - Batch upload of assets and systems from GIS tables to Datastream 7i, including custom fields

- **Approach:**
 - Pre-existing GIS features source for almost all assets
 - Required assignment of unique ID, spanning all GIS layers
 - Use of Datastream API to perform upload

- **Outcome:** Uploaded ± 500,000 Objects
- **Subsequent Datastream releases simplify this process**
Ongoing Data Maintenance

● **Challenge:**
 - Timely data maintenance essential for work order processing
 - Changes occur daily in field
 - Not always viewed as high priority

● **Approach:**
 - New features created in GIS
 - Post-processing (model builder) w/in GIS
 - Resulting asset records uploaded to Datastream

● **Outcome:**
 - Remains a challenge

● **Subsequent Datastream releases simplify this process with automatic synchronization at table/field level**
Summary

- **GIS integration is core aspect of our implementation**
 - Provides a “front-end” to all assets
 - Holds promise for in-depth operations focused analysis
- **Web Services provides multi-purpose integration path**
 - Provided “toolkit” for tying Datastream to custom written Call Center application
- **Municipal implementations are different**
 - Business process complexity
 - Hierarchies and GIS
 - Data maintenance becomes crucial

- **Contact:** stephen.sherman@ci.greensboro.nc.us