
Custom Data Access with MapObjects Java Edition

Next Generation Command and Control System (NGCCS)

Tactical Operations Center (TOC) 3-D

Concurrent Technologies Corporation

Derek Sedlmyer

James Taylor

05/24/2005

Abstract: Integrating data has always been a challenge with every IT application,

especially GIS. GIS applications have many different data formats that are not ubiquitous

among all GIS applications. Couple this with the DoD, which also has many data formats

for data messaging and storage, and accessing data in a GIS quickly turns into a

daunting task. MapObjects Java Edition was designed to allow developers to integrate

custom data via their Content Provider Framework. ESRI developed several Content

Providers to access external data such as ArcIMS servers, ArcSDE, shapefiles, CAD

files, and various raster and vector product files. This presentation will provide an in-

depth tutorial on how to develop a Content Provider, show the Content Provider in

action, and share lessons learned in implementation.

Introduction

A Content Provider makes it easy to adapt MapObjects Java Edition to a custom data

source. The Content Provider can talk directly to a custom data source, query data from a

database, or listen for data being pushed to it. The Content Provider interfaces within

MapObjects Java Edition give you the flexibility to ingest data in any manner that is

desirable.

The Content Provider interfaces also separate the data access and conversion logic from

the application logic. This allows the data access code to operate independently from the

application code, since the application code and data access code are no longer tightly

integrated together. With this separation, complex business logic for data access and

conversion can be contained completely within the Content Provider. The Content

Provider can then be tested and validated separately from the application itself.

Once a Content Provider is developed, it can be used in any MapObjects Java Edition

application. This application can be a desktop application, a web application, or an

applet. This promotes reuse amount many different applications, and also different types

of applications.

This paper will act as a guide for a developer that wishes for MapObjects Java Edition to

ingest custom data. This custom data can be in any format, provided that APIs exist to

read it. This will first provide a background on the MapObjects Java Edition Content

Provider framework, and then will go on to describe a sample implementation of a

Content Provider to read an arbitrary XML file that contains geospatial data.

Background

MapObjects Java Edition is a pure Java Mapping API. MapObjects Java Edition can be

used in desktop application, Java applets, as well as server-side environments.

MapObjects Java Edition has a framework for accessing external data sources called the

Content Provider framework. The framework abstracts away data access so that

MapObjects Java Edition can access potentially any GIS data source. Figure 1 contains

the class diagram of the Content Provider framework in MapObjects Java Edition. This

class diagram was provided by ESRI and found in the API documentation for

MapObjects Java Edition.

Figure 1 Content Provider Framework Class Diagram

The Content Provider framework typically produces Layer objects so that they can be

added to a Map object for display. The Layer objects are exposed from classes that

implement the Content interface. Figure 2 shows a class diagram of how the Content

Provider, Layer Sources, and Layers are interfaced together. This class diagram was

provided by ESRI and found in the API documentation for MapObjects Java Edition.

Figure 2 Content Provider/Layer Source/Layer Interactions

MapObjects Java Edition also has various Layer implementations to hold and access a

variety of different data. For instance, a FeatureLayer is intended to access vector data;

an ImageLayer accesses raster data; and an ImageServerLayer accesses an image service

on an ArcIMS server. Figure 3 shows a class diagram of the different Layer

implementations. This class diagram was provided by ESRI and found in the API

documentation for MapObjects Java Edition.

Figure 3 Layer Implementations Class Diagram

Content Provider Components

This section discusses the various components that make up a Content Provider and

describe the purpose of each.

Layer Source

A Layer Source is responsible for managing a connection to an external data

source and the datasets that make up the external data source. A Layer Source

object will create and return the necessary Layer objects in order to view the data

on a Map object.

ESRI marks the com.esri.mo2.map.dpy.LayerSource class as

deprecated. It states that the developer should use the Content API to retrieve

layers. A Layer Source still needs to be developed in order to support

serialization and de-serialization from an extended ArcXML (AXL) file.

Within MapObjects Java Edition, there are many different default Layer Sources

already developed. The most common is the BaseWorkspaceLayerSource

class. It is responsible for creating Feature Layer objects from external sources

that contain vector data. It uses a Workspace object that contains Feature

Classes and Feature Datasets to create Layer objects. The second most common

is the BaseImageLayerSource class. It is responsible for creating Image

Layer objects from external sources whose data is an image format.

Layer Source Factory

A LayerSourceFactory is responsible for constructing a specific

LayerSource for attributes that are specified. Each Layer Source

implementation should also have a LayerSourceFactory implementation.

An instance of the LayerSourceFactory needs to be added to the

LayerSourceRegistry so that it can be found later. The

LayerSourceFactory instance is indexed by a specific Type string value

within the LayerSourceRegistry. The Type string value can be used to

retrieve the LayerSourceFactory that should be used to construct a

particular LayerSource.

Map Dataset

A Map Dataset is responsible for querying the external data source, via the Layer

Source, and producing the data for the Map to draw. A Map Dataset will be

associated with a Layer object, so that the Layer object can call upon it to retrieve

data. The Layer will pass along query criteria such as attribute filters and spatial

filters to the Map Dataset in order to retrieve only the necessary data.

There are two main Map Dataset interfaces within MapObjects Java Edition –

FeatureClass and ImageClass. The FeatureClass interface should be

implemented in order to access vector data and associated attribute values.

FeatureClass implementations will manage the attribute fields and their

types, and also will be responsible for querying the external data source for the

data, and returning it. The ImageClass interface should be implemented in

order to access raster data. ImageClass implementations will be responsible

for querying the external data source for the image, converting the image to the

appropriate type for drawing, and returning it.

Cursor

A Cursor object is responsible for iterating over a set of data results and is used

to provide custom filtering on the data or data manipulation. Cursor objects

will be returned from the Map Dataset object’s search methods. A Cursor is

synonymous with a java.util.Iterator object.

MapObjects Java Edition provides several Cursor implementations to perform a

variety of tasks such as geometry transformations, selection set filtering, and

query filtering.

Workspace

A Workspace object contains a set of Map Datasets, such as FeatureClass

objects. It is used in conjunction with a WorkspaceLayerSource so that it

can easily produce Layer objects.

ContentProvider

A ContentProvider object is the main entry point for the Content Provider.

It provides methods to access the root Content objects. There are two base

types for Content Providers. A ConnectionContentProvider should be

used for Connection-based content providers. A

FileSystemContentProvider should be used for File-based content

providers.

Source

A Source object is a representation of an external source of data. Its purpose is

to produce Folder object that contains the Content. Source objects can be

cached through the SourceCache object. Source objects are constructed

from the Connection object. Source objects typically contain Dataset

objects that are used to query the external data source.

Content can be retrieved from the Source object via a path-like string. Each

Content within the Source will have a unique name. The Source object can

be considered the root folder for a specific Content Provider.

Content

MapObjects Java Edition’s documentation states that a Content object is a

lightweight proxy representation of an object that exists within some external

database of filesystem. The Content object can expose Feature Layers, Feature

Classes, Feature Datasets, Image Layers, Image Classes, or other types of datasets

or layers.

Folder

A Folder object is a specialized version of a Content object that contains

multiple Content objects. A Folder is used to arrange and organize multiple

Content objects.

XML Content Provider

This section will step through how to create a Content Provider using various code

examples. This assumes that the reader has some level of experience in developing

applications using MapObjects Java Edition. It is beneficial to review the MapObjects

Java Edition Developer’s Guide for more information on working with MapObjects Java

Edition, developing custom Feature Classes, and developing Content Providers.

This simple Content Provider will access an XML file located on the file system. The

XML file is in a custom format developed by CTC. Refer to Appendix A for the schema

of the XML file. Refer to Appendix B to view the actual XML file.

Create LayerSource Implementation

This represents the Layer Source that will be used to create

com.esri.mo2.map.dpy.FeatureLayer objects that know how to draw

data from the XML File.

A BaseWorkspaceLayerSource was chosen for simplicity. All that is

needed is to create a custom Workspace implementation that produces Feature

Dataset objects, and the BaseWorkspaceLayerSource will take care of

creating the Layer object. Creation of the Workspace implementation is

covered in Section 4.2.2.

getLayerSource Method

This method is used to get an instance of the XML File Layer Source.

Retrieving a handle to the instance is controlled through this method to

ensure that only one exists in the JVM at any one time. This method will

determine if an instance of the XML File Layer Source is in the cache. If

one is found, then it is returned, otherwise, a new one is created, added to

the cache, and then returned. Subsequent requests for an instance will

return the cached instance.

getAttributes Method

This method returns the attributes of the XML File Layer Source as a

HashMap. These attributes will be used when serializing to an AXL

Configuration File.

The XML File Layer Source has two attributes – Type and File. Type is

required and is unique among all the different Layer Sources defined in

the system. The Type attribute in the XML File Layer Source is always

set to “XMLFileLayerSource”. File is the location of XML File.

When the configuration of the XML File Layer Source is serialized to an

AXL file, it will appear like the following in the AXL file (within the

<FOLDERS> element):

<FOLDER name="ws-0" type="XMLFileLayerSource">
<ATTRIBUTE name="File" value="C:\data\sample_data.xml"/>
</FOLDER>

getWorkspace Method

The getWorkspace method returns a reference to the Workspace object

that should be used by the super class to acquire workspace information.

The Workspace object is contained as a private data member within the

XML File Layer Source class.

Create Workspace Implementation

Refer to the CXMLFileWorkspace.java file contained in the source repository.

The CXMLFileWorkspace class is contained within this file. This class is a

Workspace implementation in order to retrieve

com.esri.mo2.data.feat.Dataset objects and the names of the

datasets from the external source. In this case, the external source is the XML

file.

getDatasetNames Method

This method will parse the XML file, in this case using XMLBeans, and

iterate over all of the Dataset elements within the file. The names of each

dataset will be placed into an array, and the array will be returned.

getDataset Method

This method will create a CXMLFileFeatureClass object for the

specified dataset name, and return it. More details on the

CXMLFileFeatureClass class are contained in Section 4.2.3.

getDatasets Method

This method simply retrieves the names of all the datasets by calling the

getDatasetNames method. Then, for each name, getDataset is

called to create a dataset for that name. Each dataset is then added to the

array and returned. Each element of the array will be of type

CXMLFileFeatureClass that will be detailed in Section 4.2.3.

Create a Feature Class Implementation

A Feature Class needs to be implemented in order to access the data within the

XML file when the Layer needs data to draw. CXMLFileFeatureClass

implements the FeatureClass interface, and access the XML file for the

appropriate data.

When the CXMLFileFeatureClass is constructed it must initialize the

various properties of the Feature Class such as fields, coordinate system, and

feature type (Point, Line, or Polygon). The XML file will be accessed in order to

get that information.

searchEnvelope Method

This method is implemented in order to access the data from the XML file.

In this method, the XML file is parsed, and the correct dataset element for

the Feature Class is found. That dataset element is handed off to a

Cursor implementation so that Feature objects can be created. The

spatial and where clause filtering is handled at a higher level through

MapObjects Java Edition via a BaseQueryFilterCursor object.

The Cursor implementation is covered in Section 4.2.4.

Creating a Cursor Implementation

A Cursor is an object that sometimes does not need implemented. There are

several default Cursor implementations available with MapObjects Java Edition.

In this Content Provider, a Cursor is implemented just to show how to

implement one.

The Cursor implementation for this Content Provider is contained within the

CXMLFileCursor class. The main part of the Cursor code is contained

within the peek method. In this method a Feature element is pulled from the

XML file, and the data is placed into a MapObjects Java Edition Feature object.

The Feature object is then set in the _next data member within the Cursor.

When the next method is called on the cursor, the value in the _next data

member will be returned.

As of right now, there have been enough classes created to create a Layer which

could then be added to a Map, perform a search and retrieve results from the

XML file, display the data on a Map, and serialize the configuration to an AXL

configuration file. Next, classes that implement some of the Content API

interfaces (contained in com.esri.mo2.src.sys) will be implemented so that the

Layers can be accessed via the Content API, and through the Catalog Model

within JoViewPlus, and other MapObjects Java Edition applications.

ContentProvider, Source, and Connection Implementations

Since our external data source is file-based, we do not have to implement these interfaces

for this Content Provider. They are already implemented for us in the

com.esri.mo2.src.file package.

Create a FileHandler Implementation

As mentioned before, we do not have to implement ContentProvider,

Source, or Connection interfaces, but we do have to implement the

FileHandler interface. The FileHandler interface is responsible for

identifying which files have relevant data for the Content Provider. A

FileHandler implementation only needs to be done for Content Providers

whose data resides in a file.

The CXMLFileHandler class implements the FileHandler interface. The

primary method that needs implemented is the filter method. The filter method

takes in an array of File objects. The File objects each need to be checked to

see if this Content Provider can read them. To do this, the file must have an .xml

extension, and must be able to be parsed by the XMLBeans that were generated

from the schema. If those conditions hold true, then a new CXMLFileFolder

object is added to the LinkedList argument passed into the filter method. The

CXMLFileFolder class is covered in Section 4.2.8.

Within the CXMLFileHandler class, there is an implementation of a

LayerSourceFactory. A LayerSourceFactory implementation is

created in order to aid in the de-serialization process from AXL. The

responsibility of a LayerSourceFactory is to create a specific

LayerSource. The parameters necessary to create the Layer Source are

contained within a HashMap argument in the constructLayerSource

method in the LayerSourceFactory. The LayerSourceFactory

interface is implemented by the CXMLFileLayerSourceFactory class

within the CXMLFileHandler class.

An instance of CXMLFileLayerSourceFactory needs to be added to the

LayerSourceRegistry object. The LayerSourceRegistry associates a

string Type value with an instance of a LayerSourceFactory. This

association takes place within a static initializer in the CXMLFileHandler

class. An instance of CXMLFileLayerSourceFactory is created, and

added to the LayerSourceRegistry with the Type value equal to

“XMLFileLayerSource”. When de-serialization from AXL occurs, MapObjects

Java Edition will use the “Type” attribute from the Folder to create a

LayerSource. The LayerSource is then used to create the necessary Layer

objects to be added to the Map.

Allowing MapObjects Java Edition to discover the FileHandler

The custom FileHandler implementation, CXMLFileHandler, needs to be

“published” so that it can be discovered by MapObjects Java Edition. To allow

MapObjects Java Edition to find CXMLFileHandler a file named

com.esri.mo2.file.FileHandler was added to the folder META-

INF/services. The com.esri.mo2.file.FileHandler file contains the fully qualified

name of the CXMLFileHandler class on the first line of the file. The contents

of com.esri.mo2.file.FileHandler would be:

mil.joint.webcop.ext.moje.xmlfile.CXMLFileHandler

The META-INF/services folder will also need to appear on the classpath or

included in the JAR file for the Content Provider so that MapObjects Java Edition

can find it.

Creating a Folder Implementation

A Folder is an extended version of the Content class. A Folder can

contain multiple Content objects. Creating a Folder implementation is a

mechanism of organizing Content objects. Arranging Content objects in

Folder objects is optional

A custom Folder implementation was created with the CXMLFileFolder. Its

responsibility is to read the Dataset elements from the XML, create Content

objects from them, and return them from the getContents method. The

Content objects created are of type CXMLFileContent, which is discussed in

Section 4.2.9.

Creating a Content implementation

The Content interface is implemented when an object needs to be exposed.

Most Content implementations expose some sort of MapDataset or Layer

object. The object is exposed through the getData method within the Content

implementation.

MapObjects Java Edition needs to know what types of objects are exposed with

the custom Content implementation, so a method called

getAvailableContentTypes needs to be implemented. It returns a String

array of the fully qualified class names of the objects that are exposed by the

Content.

Other methods within the Content interface need to be implemented. The

getName and getIcon methods need to be implemented to produce a name

and a visual icon for the specific Content.

Deploying the XML Content Provider

The XML Content Provider should be deployed in the JAR format. The JAR file must

contain the com.esri.mo2.file.FileHandler file within the META-INF/services folder.

The JAR file can be placed anywhere on the file system, but must be included on the

classpath in order for MapObjects Java Edition to be able to use it. To use the Content

Provider within JoViewPlus, perform the following steps:

Be sure MapObjects Java Edition is installed.

Open <MOJE_HOME>/Scripts/moj_run.bat in a text editor.

Append the path to the Content Provider JAR file, and all third party JARS to the end of

the CPATH variable.

Save moj_run.bat, and Exit.

Using the XML Content Provider

JoViewPlus is the quickest way to test out the Content Provider. An XML file with the

data should be present on an accessible file system. Follow these steps to use the Content

Provider:

Open JoViewPlus by going to Start | Programs | ESRI | MapObjects Java Edition 2.0 |

JoViewPlus

Click on the Add Data button on the toolbar, the Catalog window will appear.

Browse the file system, to the XML file that contains the data, and double-click on it.

A list of datasets within the XML file will appear, choose the dataset you wish to view.

You should see the data symbolized in the map view.

Implementation Notes

The XMLBeans package was used to parse the XML file. The XMLBeans package was

used to read the XML Schema and create JavaBean classes to hold the data from the

XML file. This makes it easier to navigate through the data, and converting between data

types. The XML Schema that was used is detailed in Appendix A.

Appendix A: XML Schema
<?xml version="1.0" encoding="UTF-8"?>
<xs:schema
targetNamespace="http://webcop.joint.mil/ext/moje/xmlfile/beans"
elementFormDefault="qualified" attributeFormDefault="unqualified"
xmlns:simple="http://webcop.joint.mil/ext/moje/xmlfile/beans"
xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="Datasets" type="simple:DatasetsType">
<xs:annotation>

<xs:documentation>Comment describing your root
element</xs:documentation>

</xs:annotation>
</xs:element>
<xs:complexType name="DatasetsType">

<xs:sequence>
<xs:element ref="simple:Dataset"

maxOccurs="unbounded"/>
</xs:sequence>

</xs:complexType>
<xs:complexType name="DatasetType">

<xs:sequence>
<xs:element ref="simple:DatasetConfiguration"/>
<xs:sequence>

<xs:element ref="simple:Feature"
maxOccurs="unbounded"/>

</xs:sequence>
</xs:sequence>
<xs:attribute name="datasetName" type="xs:string"

use="required"/>
<xs:attribute name="geometryType" use="required">

<xs:simpleType>
<xs:restriction base="xs:string">

<xs:enumeration value="POINT"/>
<xs:enumeration value="LINE"/>
<xs:enumeration value="POLYGON"/>

</xs:restriction>
</xs:simpleType>

</xs:attribute>
</xs:complexType>
<xs:element name="Dataset" type="simple:DatasetType"/>
<xs:complexType name="FeatureType">

<xs:sequence>
<xs:sequence>

<xs:element name="Field"
type="simple:FieldType" maxOccurs="unbounded"/>

</xs:sequence>
<xs:choice>

<xs:element ref="simple:Point"/>
<xs:element ref="simple:Polyline"/>
<xs:element ref="simple:Polygon"/>

</xs:choice>
</xs:sequence>

</xs:complexType>
<xs:complexType name="PointType">

<xs:attribute name="x" type="xs:double"/>

<xs:attribute name="y" type="xs:double"/>
</xs:complexType>
<xs:complexType name="PathType">

<xs:choice>
<xs:element name="Point" type="simple:PointType"

maxOccurs="unbounded"/>
</xs:choice>

</xs:complexType>
<xs:complexType name="HoleType">

<xs:choice maxOccurs="unbounded">
<xs:element name="Point" type="simple:PointType"/>

</xs:choice>
</xs:complexType>
<xs:complexType name="RingType">

<xs:choice maxOccurs="unbounded">
<xs:element name="Point" type="simple:PointType"/>
<xs:element name="Hole" type="simple:HoleType"/>

</xs:choice>
</xs:complexType>
<xs:complexType name="PolygonType">

<xs:choice>
<xs:element name="Ring" type="simple:RingType"

minOccurs="0" maxOccurs="unbounded"/>
</xs:choice>

</xs:complexType>
<xs:complexType name="PolylineType">

<xs:sequence>
<xs:element name="Path" type="simple:PathType"

maxOccurs="unbounded"/>
</xs:sequence>

</xs:complexType>
<xs:complexType name="FieldType">

<xs:attribute name="name" type="xs:string" use="required"/>
<xs:attribute name="value" type="xs:string"

use="optional"/>
</xs:complexType>
<xs:element name="Ring" type="simple:RingType"/>
<xs:element name="Hole" type="simple:HoleType"/>
<xs:element name="Polygon" type="simple:PolygonType"/>
<xs:element name="Polyline" type="simple:PolylineType"/>
<xs:element name="Point" type="simple:PointType"/>
<xs:element name="Feature" type="simple:FeatureType"/>
<xs:complexType name="DatasetConfigurationType">

<xs:sequence>
<xs:element ref="simple:FieldConfiguration"

maxOccurs="unbounded"/>
</xs:sequence>

</xs:complexType>
<xs:complexType name="FieldConfigurationType">

<xs:attribute name="name" type="xs:string" use="required"/>
</xs:complexType>
<xs:element name="FieldConfiguration"

type="simple:FieldConfigurationType"/>
<xs:element name="DatasetConfiguration"

type="simple:DatasetConfigurationType"/>
</xs:schema>

Appendix B: Sample XML File
<?xml version="1.0" encoding="UTF-8"?>
<Datasets xmlns="http://webcop.joint.mil/ext/moje/xmlfile/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://webcop.joint.mil/ext/moje/xmlfile/beans
schema.xsd">
 <Dataset datasetName="XMLFileTest" geometryType="POINT">
 <DatasetConfiguration>
 <FieldConfiguration name="ID"/>
 </DatasetConfiguration>
 <Feature>
 <Field name="ID" value="200"/>
 <Point x="0.0" y="0.0"/>
 </Feature>
 </Dataset>
</Datasets>

Author Contact Information

Derek Sedlmyer, Software Engineer, CTC, sedlmyed@ctc.com, 814-269-6532

James Taylor, Software Engineer, CTC, taylorj@ctc.com, 814-269-6863

