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1.0 GENERAL INTRODUCTION 

1.1 INTRODUCTION 

Groundwater modeling of a large basin of 

156,000 hectares, the Upper Skunk River basin 

in Iowa, would take years of analysis if it were 

not for Geographical Information System (GIS) 

data.  Even then the level of accuracy for the 

output results is only as good as the input data. 

To improve on the accuracy of the input data, a 

groundwater model of a 5,200 hectare Walnut 

Creek watershed within the Upper Skunk basin 

was created (Huddleston, 1984). Using the 

USGS MODFLOW 2000 FORTRAN model 

and detailed GIS data from the National Soil 

Tilth Lab in Ames, Iowa an inverse model was 

created for Walnut Creek. Walnut Creek was 

modeled as a two layer unconfined system. The 

results from the MODFLOW 2000 least squares 

(LSG) inverse procedure did not agree with 

published data. The LSG procedure was 

replaced with a Least sum Absolute Deviation 

regression and Expectation Maximization 

(LAD-EM) procedure. The LAD-EM 

MODFLOW results were in agreement with 

published data. The results of both inverse 

models were incorporated into a groundwater 

model of the larger encompassing Upper Skunk 

River basin.  The problems of applying small 

watershed parameters to a larger encompassing 

basin will be discussed. Both the Walnut Creek 

watershed and the Upper Skunk River basin are 

to be modeled using ArgusONE GIS interface to 

MODFLOW. The issues related to GIS 

modeling will be solved using ESRI, ET 

GeoWizards, and compiled C software. 

1.2 DEFINITION OF THE PROBLEM 

The Walnut Creek watershed in north 

central Iowa is 5178.8 hectares. Walnut Creek 

watershed is primarily an agricultural watershed 

within the low-relief landscape of the Des 

Moines Lobe.  

 

Figure 1.1 Landform Regions In Iowa 

Eight years of rainfall, runoff, and groundwater 

observations are available for the Walnut Creek 

watershed. However, while literature cites 

estimates of the hydraulic conductivity for this 

area, a more detailed number is required to 

match groundwater model output with observed 

data.  

The problem of determining the hydraulic 

conductivity is referred to as the inverse 

problem. Inverse modeling is a two step process 

as the inverse model is run to calculate the 

parameters and then a forward model is run with 

the new parameters. Before MODFLOW 2000 

was released, experienced groundwater 

modelers used trial and error approaches to 

estimate the parameters. The number and 

combinations of parameter adjustments are not 

bounded making “trial and error” a time 

consuming process.  In addition, the 

combination of parameters to fit a solution is 

nearly infinite.  In the end, the modeler 

recognizes that the model fits the observed 

conditions but the input parameters may be one 

of many sets in their model to generate output 

that fits the observed data. 

Automated inverse models identify 

unknown model parameters by using 

mathematical optimization techniques. The most 

important technique is to minimize the model 

forward parameter. This minimization is carried 
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out over a geographically defined domain using 

a user specified grid cell size. The forward 

parameter in a groundwater flow model is the 

hydraulic conductivity. When the maximum 

value of any one cell of a model computed 

hydraulic conductivity is less than a pre-defined 

tolerance, then the inverse model is said to 

converge. 

When convergence of the forward 

parameter does not occur, the groundwater flow 

inverse model will minimize an objective 

function based on pressure head. Initial forward 

parameter estimates are used, the forward model 

is run, the objective function is evaluated, and 

new estimates of the forward parameter are used 

for a new forward model run. The cycle 

continues until the objective function criteria 

have been met.  

When the forward parameter cannot be 

minimized and the objective function does not 

converge to a minimum tolerance, the process is 

terminated after a user specified number of 

cycles. If this occurs, the groundwater model 

itself will have to be re-architected. 

 

1.3 OBJECTIVE 

The objective is to provide a groundwater 

model of the Upper Skunk basin. Results of the 

inverse modeling for the smaller Walnut Creek 

watershed (Huddleston, 2004) are used to define 

the hydraulic conductivity for the aquifer layer. 

GIS data is used to define the elevation of the 

bedrock topology, surface contours, watershed 

domain, and streams for the Upper Skunk 

groundwater model. MODFLOW 2000 by itself 

does not contain a geospatial interface; however 

there are several to choose from in the 

commercial sector. 

ArgusONE is one of the geospatial 

interfaces that can be used to pre-process 

hydrography, hypsography elevation data, and 

rainfall data as input into MODFLOW 2000. 

This ArgusONE (http://www.argusint.com) 

interface also performs post processing of the 

MODFLOW 2000 output for graphic and image 

analysis.  

Modeling of Walnut Creek watershed 

(Huddleston, 1984) determined that the forward 

parameters computed by the MODFLOW 2000 

LSG procedure predicted a confined 

groundwater aquifer. Using a modified 

MODFLOW 2000 LAD-EM procedure, a 

second set of forward parameters was calculated 

predicting an unconfined aquifer. Both sets of 

forward parameters (hydraulic conductivity) 

will be used in the Upper Skunk river 

groundwater model. 

1.4 LAYOUT OF PAPER 1199 

Chapter 2 will present the theory behind 

the inverse modeling. Normally, inverse 

modeling theory would not be presented within 

a geospatial paper; however, the groundwater 

modeling will be performed with two sets of 

results from MODFLOW 2000. For 

completeness, both the LSG and LAD-EM 

theory is presented. Chapter 3 will discuss the 

available sources of GIS data.  Chapter 4 will 

present the GIS solution for modeling the Upper 

Skunk basin. Analysis of model results and 

comparisons between the groundwater model 

results of the differing sets of forward 

parameters will be discussed. Chapter 5 presents 

a summary of the analysis and results. Chapter 6 

contains a listing of the source code. Chapter 7 

contains a compendium of references for this 

topic. 
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2.0 INVERSE MODELING 

2.1 UNCERTAINTY 

Uncertainty in the subsurface distribution 

of hydrogeologic properties can be broken into 

two components: geologic uncertainty and 

parameter uncertainty.  Geologic uncertainty 

refers to the uncertainty in the location of the 

aquifer units and aquitards, as well as the 

uncertainty in the boundary conditions. 

Parameter uncertainty denotes the 

uncertainty in the values of the hydrogeologic 

parameters throughout the spatial domain.  

Inferring properties about parameters fall into 

two categories: parametric and nonparametric.  

In parametric statistics, the mean is the usual 

statistic used to indicate average value of a 

population or sample. If the mean is combined 

with the standard deviation, then the pair of 

numbers indicates both the central tendency of 

the group of numbers and the spread.  A large 

standard deviation reflects a large spread in the 

data; that is, the numbers are diverse and far 

apart. A small standard deviation reflects a 

tightness of the data. A plot of the data in a 

histogram creates a graph that looks like the 

well-known bell-shaped curve if it is normally 

distributed. 

If data fit a normal distribution, the mean 

and the standard deviation can be combined to 

provide confidence intervals on the population. 

This information is often used to create a range 

of values in which you might expect future 

sampled data to appear.  More precisely, 

/2 /2X - z     X  X + z
n n

α α

σ σ   
≤ µ ≤ ≤   

   
  2.1 

in which X  is the sample mean, / 2zα  are values 

of random variables having a standard normal 

distribution; α  is the level of significance; and 

σ is the standard deviation of the population n.  

This confidence interval represents a means of 

providing a range of values in which the true 

value can be expected to lie. 

To employ parametric statistical tests, the 

data must be on an interval scale, continuous, 

and normally distributed 

The spatially variable parameters of most 

interest in groundwater inverse applications 

include hydraulic conductivity (K) for 

unconfined aquifers or transmissivity for 

confined aquifers (transmissivity T=KD, where 

D is the thickness of the confined aquifer), 

storage coefficients (S), groundwater recharge 

and discharge, fluxes and piezometric heads on 

designated boundaries, and chemical rate 

coefficients. All of these parameters are 

uncertain, but some may have a greater effect on 

predictions than others in any given application.  

Usually it is not advisable to include recharge as 

a fitting parameter but rather to estimate 

recharge based on precipitation, 

evapotranspiration, infiltration, and surface 

runoff calculations.  

2.2 OPTIMIZATION 

Statistical optimization differs somewhat 

from the theorems provided for finding the 

minima and maxima of an explicit function.  For 

the explicit function, there are only two 

elements, the function and the unknown(s).  For 

statistical optimization, the function to be 

optimized is called the objective function, which 

is an explicit mathematical function that 

describes what is considered to be the optimal 

solution.  Second, there is a mathematical model 

that relates a random variable, called the 

criterion or dependent variable, to a vector of 

unknowns and a vector of predictor variables, 

called independent variables.  The predictor 

variables usually have a causal relationship with 

the criterion variable.  The third element of 

statistical optimization is the data set.  The data 

set consists of measured values of the criterion 

variable and the predictor variable(s). 

There are three general categories that can 

be used to classify optimization techniques: 

analytical, numerical, and subjective.  

Analytical optimization uses analytical calculus 

in deriving the unknowns from the objective 
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function.  Analytic solutions provide a direct 

and exact solution for simple model structures.  

However, they do not necessarily guarantee 

optimality since the vanishing differential may 

be a local minimum, maximum, valley, ridge, or 

saddle point. 

Numerical optimization evaluates 

coefficients using computational techniques 

such as regression.  Numerical optimization 

techniques include matrix and linear 

programming approaches.  In problems that can 

be solved using a matrix approach to least 

absolute deviation or least squares, there is a 

single value that minimizes the sums. 

Subjective optimization is a trial and error 

process that relies heavily on the user’s 

experience. 

The error, or residual, is defined here as 

the difference between the predicted and 

measured value of the criterion value.  As such, 

a positive residual indicates over prediction.   

Using a Manhattan distance model, 

i1
i

x  = x∑  and given a system of equations 

Ax = b, the least absolute deviation regression 

estimate that minimizes the error 

x 1
x̂  = argmin b - Ax  is shown as follows: 

i ij j

i j

f (x) = b Ax  = b  - a x− ∑ ∑   2.2 

The minimum can be found by differentiating 

f(x) and setting the result to 0 

( )
i ij jm

j

ik

i 1k

i ij j

j

ˆb  - a x
f

ˆ(x) = a  = 0,   k=1,2,...,n
x

ˆb  - a x
=

∂
−

∂

∑
∑

∑

      2.3 

Equation 2.3 can be rearranged as 

ik ij jik i

i i ji

ˆa a xa b
 = ,     k=1,2,...,n

ˆ ˆe (x) e(x)
∑ ∑∑  2.4 

Equation 2.4 can be expressed in matrix 

notation as: 

T T -1ˆ ˆ ˆ ˆ ˆA E(x)b = A E(x)Ax,  where E(x) = Diag(e(x))

      2.5 

If T ˆA E(x)A  is invertible, then the estimate can 

be found as: 

( )
-1

T Tˆ ˆ ˆx = A E(x)A A E(x)b    2.6 

Using an Euclidean distance model, 
1

2
2

i2
i

x  = x
 
 
 
∑  and given the system Ax = b, 

the least squares regression estimate that 

minimizes the error 
2

x 2
x = argmin b - Ax  is 

shown as follows: 

( )
2

2

i ij j2
i j

f x  = b - Ax  = b  - a x
 
 
 

∑ ∑  2.7 

The minimum can be found by differentiating 

f(x) and setting the result to 0 

( ) ( )i ij j ik

i j

f
x  = 2 b  - a x a  = 0,  k=1,2,...,n

x

 ∂
− 

∂  
∑ ∑

      2.8 

Equation 2.8 can be rearranged as follows: 

ik i ik ij j

i i j

a b  = a a x ,   k = 1,2,...,n∑ ∑∑  2.9 

Equation 2.9 can be expressed in matrix 

notation as: 

T TA b = A Ax  2.10 

If TA A is invertible, then the estimate can be 

found as: 

( )
-1

T Tx = A A A b  2.11 

In the generation of a solution of equation 2.11, 

several problems may be encountered. It is 

possible that the sequence does not converge. 

Also, matrix A
T
A may be near singular 

(elements very close to zero), and a solution 
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cannot be obtained.  Finally, the displacement 

vector ∆x may become so large that parameter 

values are no longer in the admissible region. 

In order to avoid these difficulties, it is 

necessary to modify equation 2.11 to guarantee 

convergence.  The modification includes an 

additional term added to A
T
A to avoid the 

singularity: 

� ( )
-1

T T

Mx = A A+λ I A b  2.12 

where λM is a coefficient and I is the unit 

matrix. The MODFLOW 2000 inverse 

procedure uses an algorithm based on Dennis et 

al. (1981) for estimating the additional term.  

2
T

M k

i j

Y
λ I = A w A - 

b b

∂

∂ ∂
 2.13 

The estimate is the difference between T

k kA wA  

and the Hessian matrix equation defined in Hill, 

1992, Sun, 1994, and Huddleston, 2004 where 

w is a matrix of weights. 

3.0 AVAILABLE SOURCES OF DATA 

3.1 INTRODUCTION 

The study area references for the geology 

and hydrogeology in this paper are: the 

Geological Society of Iowa Guidebook 58 

(Simpkins, 1993); Iowa Department of Natural 

Resources Geologic Survey Bureau Guidebook 

Series No. 20 (Simpkins, 1996); the State of 

Iowa Department of Natural Resources web 

pages (www.iowadnr.com); the Iowa Geological 

Survey Open File Reports 82-8 WRD for Boone 

County and 82-85 WRD for Story County 

(Thompson, 1982); and the USDA ARS Walnut 

Creek Watershed Research Protocol Report 

(Sauer and Hatfield, 1994). 

3.2 USDA NATIONAL SOIL TILTH LAB 

Detailed GIS data is made possible for 

Walnut Creek as a result of the work of the 

USDA National Soil Tilth Lab in Ames, Iowa. 

Coverages of the Walnut Creek watershed are 

available in NAD83 format. Many of these were 

created by Wolfgang Oesterreich. These are 

located in Walnut Creek Watershed, Boone & 

Story Counties, Iowa. The data has been 

projected from NAD27 to NAD83. The Trimble 

Pathfinder Professional GPS model 

ASSETSURVEYOR DATA COLLECTION 

program was used to spotcheck accuracy of the 

GIS data. The accuracy of the data is one meter. 

A grid of elevations in-and-around Walnut 

Creek Watershed, Boone & Story Counties, 

Iowa was created by Jon Pickus, Lockheed, Las 

Vegas, NV for EPA using the Grid KRIGING 

method. The projection is UTM. The zone is 

north 15. The units are meters. This data was 

also used to verify the data. 

3.3 IOWA DEPARTMENT OF NATURAL 

RESOURCES 

The Iowa Department of Natural 

Resources Natural Resources (DNR) began 

development of the Natural Resources 

Geographic Information System (NRGIS) 

following passage of the 1987 Groundwater 

Protection Act. This legislation included 

provisions for developing a Geographic 

Information System (GIS) because it recognized 

that GIS technology successfully was being 

employed to assess complex natural resource 

and environmental problems. Further, it could 

be used to develop information for the public to 

help explain these issues. The groundwater 

legislation also required DNR to develop a map 

depicting the vulnerability of groundwater to 

contamination.  Thus, DNR initially focused 

much of its GIS activities towards the issue of 

groundwater contamination and development of 

the map product, Groundwater Vulnerability 

Regions of Iowa.  The GIS data developed for 

this project became the foundation of the 

NRGIS. 

The main FTP internet resource site for 

NRGIS is ftp://ftp.igsb.uiowa.edu/pub/gisdata/. 

The NRGIS Library is the cornerstone to the 

department's GIS capability.   It is an organized 

collection of geographically referenced 

databases.  The databases are thoroughly 
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documented and available to all NRGIS users.  

The NRGIS Library currently contains 384 PC 

Arc/Info coverages that are organized by 

geographic extent: statewide, county or 

regional. Practical factors were used to 

determine the geographic extent of each 

coverage; factors included database size and 

anticipated usage. A number of coverages are 

based on geographic themes including 

boundaries of the state, counties, townships, 

sections, and towns. Resource-related themes 

are developed in coverages such as rivers, 

topography, roads, and geology.  Examples of 

some specific themes in the NRGIS Library 

include public water supplies, waste disposal 

sites, plugged water wells and registered 

underground storage tanks. 

The coverages of interest for groundwater 

modeling are the hydrography and hypsography 

data containing river locations, surface and 

bedrock elevations. In Figure 3.1 below, the 

three counties Boone, Hamilton, and Story are 

shown against a backdrop of the state basins. 

 

Figure 3.1 Hypsography data for three counties 

in Iowa 

4.0 GIS MODELING OF THE UPPER SKUNK 

BASIN 

4.1 ESTABLISHING THE FORWARD 

MODEL 

The ArgusONE geospatial interface and 

USGS MODFLOW Plug-In Extension is used 

to create a forward groundwater model of the 

Upper Skunk River basin of 155,998 hectares 

(or 602.32 square miles).  A grid of 1965 meters 

was used to discretize the basin.  The recharge 

will be the 13 linear periods of recharge over an 

eight-year period that was used in the Walnut 

Creek model.  There will be two geologic 

layers: one, an upper oxidized late Wisconsinan 

till; and two, a lower unoxidized late 

Wisconsinan till.  The area fits within Universal 

Transverse Mercator Zone 15.  It is centrally 

located within the Des Moines Lobe. 

The steps for data creation required 

manipulation of Geographic Information System 

(GIS) data.  The Iowa Department of Natural 

Resources (DNR) hypsography contour 

shapefiles for Boone, Story, and Hamilton 

counties were imported as an image.  The Iowa 

GIS has a data map projection of Universal 

Transverse Mercator (UTM) Zone 15 and a 

North American Datum of 1927 (NAD27).   

The boundary outline (domain) for the 

basin was delineated within ArgusONE using 

the contours as a visual guide.  This ArgusONE 

domain outline was exported to a file.  The 

export file resembles the Arc/INFO Generate 

(GEN) format.  The format is so close to the 

GEN format that the public domain GEN2SHP 

program was modified to convert the 

ArgusONE export format file into a shapefile.  

Chapter 6 Section 2 has the listing of the 

converted program “EXP2SHP”.  The exported 

domain file was converted to a polygon 

shapefile using EXP2SHP.  This author’s 

contributions are highlighted in bold. 

The domain shapefile and the Iowa DNR 

hypsography and hydrography layers were 

imported into the ESRI ArcMAP program.  

Using the GeoProcessing Wizard under Tools in 

ArcMAP and selecting “Intersect two layers”, 

the rivers “water” layer of the hydrography data 

was intersected with the domain to produce a 

rivers layer for the Upper Skunk river basin.  

Similarly, the hypsography elevation contour 

layer data was intersected with the domain to 

produce a contour layer for the Upper Skunk. 
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The hydrography layer has river length 

and location information but not elevation.  The 

elevation of the river is needed as input 

prescribed heads.  The next step then was to 

intersect the river and contour data.  This is not 

a straight forward process since the river and 

contour GIS data are polylines.  GIS polylines 

consist of multiple lines (arcs) strung together 

during the digitization.  They are not areal and 

the ArcMAP intersection process is not 

available for polylines.  A different procedure 

had to be devised in order to intersect the river 

and contour polylines. 

Three counties’ (Boone, Story, and 

Hamilton) hypsography data contours (topo08, 

topo40, and topo85) were merged using the 

“Merge layers together” feature in ArcMAP.  

The process was repeated for the three 

hydrography layers (rivers08, rivers40, and 

rivers85).  The GeoProcessing Wizard under 

Tools in ArcMAP “Dissolve features based on 

an attribute” was selected to resolve all the 

features into the same contour. 

The river and contour data were exported 

into a GEN file using ArcMAP and a plug-in 

called ET GeoWizards 8.6.  In order to 

individually cross the river with the contour 

data, the arcs had to be separated.  A C program 

was written to separate all of the river polylines 

into separate arcs and intersect them.  The logic 

was not trivial but others had worked it out at 

www.faqs.org.  Chapter 6 Section 1 contains the 

listing of the C program by this author. 

The two files were merged to identify the 

elevation of the river at the intersection with the 

contour.  This GEN format data file was then 

converted back into a shapefile using GEN2SHP 

and imported into ArgusONE as a data layer for 

the prescribed heads.  Figure 4.1 shows the 

locations of the intersections. 

 

Figure 4.1 Prescribed heads in the Upper Skunk 

river basin In Iowa 

The Iowa DNR hypsography bedrock 

topology was intersected with the domain 

shapefile using ArcMAP.  The new shapefile 

was imported into ArgusONE as a data layer for 

the bottom elevation of the unoxidized late 

Wisconsinan till.  Figure 4.2 shows the bedrock 

contours. 

The Upper Skunk hypsography elevation 

contour layer was imported into a data layer for 

the top elevation of the oxidized late 

Wisconsinan till.  Figure 4.3 shows the image of 

the Upper Skunk surface contours in Iowa. 

The horizontal accuracy of the 

hypsography data from Iowa DNR is 52 meters.  

When the ArgusONE first rendered the data 

there were points at which the river data was 

below the surface.  Each of the offending points 

had to be adjusted to a meter above the surface. 
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Figure 4.2 Upper Skunk DNR bedrock contour 

topology (m-msl) in Iowa 

 
Figure 4.3 Upper Skunk DNR surface contour 

topology image in Iowa 

 

 

4.2 UPPER SKUNK GROUNDWATER 

MODEL DATA 

Two geologic layers make up both the 

Walnut Creek watershed and the Upper Skunk 

River basin.  These top two layers are late 

Wisconsinan till, oxidized and unoxidized.  The 

layer below the late Wisconsinan till is a Pre-

Illinoian till which is a confining layer because 

of its low hydraulic conductivity (K < 1E-11 

m/s).  Research indicates that the top layer has a 

higher hydraulic conductivity that ranges 

between 1E-04 m/s and 1E-05 m/s. The 

unoxidized layer hydraulic conductivity ranges 

between 1E-08 m/s and 1E-09 m/s.  The entire 

basin is an unconfined system. 

The top late Wisconsinan oxidized layer 

varies in thickness from one to nine meters.  

Most of the one to three meters is immediately 

surrounding the rivers.  Apart from the rivers 

the late Wisconsinan oxidized layer varies from 

four to nine meters.  Five, six, and seven meter 

top thicknesses were used in the Walnut Creek 

inverse model. There was no difference in the 

computed forward parameter for six and seven 

meter oxidized layer thickness.  A value of 

seven meters was used in the top oxidized layer 

for the Upper Skunk river basin. 

Given the surface and bedrock 

hypsography and the top thickness, the model 

automatically computes the elevation of the 

bottom of the oxidized layer by subtracting the 

top thickness from the surface elevation.  The 

top and bottom layer thickness were computed 

for each grid cell. 

4.3 UPPER SKUNK GROUNDWATER 

MODELING RESULTS 

The upper section of the Upper Skunk 

river basin drains southward.  The lower section 

drains into the center; that is, the lower western 

section drains eastward and the lower eastern 

section drains westward.  Walnut Creek is in the 

lower western section and groundwater flow is 

from west to east. 
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Figure 4.4 Modflow Top Thickness = 7 m Top 

K = 7.8E-9 Bottom K = 1.7E-4 

 

 

Figure 4.5 LAD-EM Top Thickness = 7 m Top 

K = 6.84E-04 Bottom K = 1E-10 

Figure 4.4 shows the results of the 

groundwater modeling using hydraulic 

conductivity (K) values computes by the LSG 

method.  Figure 4.5 shows the results of the 

groundwater modeling using hydraulic 

conductivity (K) values computes by the LAD-

EM method. 

4.4 SUMMARY OF THE UPPER SKUNK 

GROUNDWATER MODELING 

The timing and recharge rates from 

Walnut Creek groundwater model were used as 

input to the Upper Skunk groundwater model.  

The groundwater model cells needed to be 

filled with moisture in a steady state period in 

order for the 12 linear variations in recharge to 

produce a groundwater map of the basin.  The 

steady state time period of 563 days was a 

rainfall impulse used to fill the cells of the 

Upper Skunk with moisture.  Since the basin is 

30 times the size of the watershed it is not 

expected that the well responses to rainfall 

impulses would have been the same.  However, 

this is not an inverse model of the basin, rather a 

forward model, and any significant length of 

time, such as 365 days, could have been used to 

initialize the Upper Skunk basin groundwater 

model cells. 

The USDA ARS National Soil Tilth 

Laboratory is NAD83 datum.  The Iowa 

Department of Natural Resources is NAD27 

datum. The horizontal accuracy is important to 

groundwater modeling in order to place the 

rivers at the exact location of the prescribed 

heads.  The grid discretization was 1965 meters 

and the GIS accuracy is 52 meters at its worst 

(15 meters at its best).  The total effect is a 2.6% 

accuracy (0.8% at its best) for the grid size.  The 

vertical accuracy is important in order to define 

the elevation of the prescribed heads.  The total 

relief of the basin is 115 meters.  Vertical errors 

of 10 meters in the GIS data can cause serious 

modeling errors.  The ArgusONE interface to 

MODFLOW will catch these errors and force 

the modeler to edit the data by hand. 
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The heads produced by using hydraulic 

conductivities computed from the LAD-EM 

groundwater model are consistent with the 

observed data.  The system was modeled as an 

unconfined system and LAD-EM hydraulic 

conductivities produced heads that were within 

two meters of heads specified in the literature. 

The west to east drainage is consistent 

with the Walnut Creek groundwater model. 

5.0 CONCLUSION 

5.1 ANALYSIS 

The NSTL GIS data had been spot 

checked with GPS data to an accuracy of one 

meter. In addition, kriging of the contours 

provided an additional level of accuracy for the 

Walnut Creek GIS data. The IOWA NAD27 

GIS data did not have the benefit of such close 

scrutiny. Both horizontal positional accuracy 

and the vertical accuracy of the hypsography 

data are essential to large basin modeling.  The 

ArgusONE interface is a good tool for resolving 

discrepancies. 

Geographic Information System data made 

it easy to define the geology for groundwater 

models but accuracy is an issue for calculating 

the elevations of the prescribed heads. 

The use of the Walnut Creek rainfall data 

to model the entire Upper Skunk river basin is a 

stretch because of the differences in the size of 

the drainage areas. An alternate recommended 

procedure for basin analysis is to analyze all the 

rain gages in the basin, analyze the rainfall for 

similar linear variations, and apply these as areal 

distributions throughout the basin.  However, 

both Walnut Creek watershed and the larger 

encompassing Upper Skunk river basin are 

within a low relief landscape not affected by 

orographic effects.  In addition, short term (i.e. 

single storm events) effects are mitigated by the 

use of the long term (i.e. 8 ½ years) record of 

data in the groundwater models. 

 

 

5.2 RESULTS 

Modeling at the basin level required large 

areas of hypsography and hydrography data in 

order to calculate the elevation of the prescribed 

heads.  A program was written to separate the 

entire river and contour polylines of the 

Geographic Information System data, intersect 

them, and identify the elevation of the river at 

the point of intersection. 

A groundwater model of the Upper Skunk 

river basin in Iowa was created.  The Upper 

Skunk river basin groundwater model is a 

reasonable estimate of basin recharge and 

groundwater flow.  The regional approach to 

groundwater modeling produced a head flow 

map oriented in the same direction as Walnut 

Creek.  The heads produced by the basin 

groundwater model using the LAD-EM model 

hydraulic conductivities matched observed 

heads in the upland Walnut Creek area.  The 

LAD-EM model hydraulic conductivity 

parameters were consistent with the values 

published by USGS (Buchmiller, 1995). 

6.0 APPENDICES 

6.1 C LISTING 

/* 

The prescribed head data for the rivers had to be identified.  The Rivers 

shapefile arc data were split into separate polylines.  The Contours arc 

data were also split into polylines.  The two sets of data were then 

intersected and the CONTOUR from the Contours shapefile was 

attached to the position of the Rivers shapefile where they intersected.  

This C program took more than ten minutes to run on a 2.4 GHz 

windows 2000 computer with 512 DDR 2700 SDRAM.  The source 

code is shown below. 

*/ 

#include        <stdio.h> 

#define MAX(a,b) ((a)<(b) ? (b) : (a)) 

#define MIN(a,b) ((a)<(b) ? (a) : (b)) 

/* 

 * This code will read in all the river arcs into memory 

 * which is 13764 different arcs.  This is from the  

 * River.txt file.  Then the topographic arcs will be read 

 * from the Topo.txt file.  Each topo arc will be  

 * compared to each of the river arcs to see if there 

 * is an intersect point. 

 */ 

int mygets(p,fpin) 

char *p; 

FILE *fpin; 

{ 

 int ch; 

 int chcnt; 

 chcnt=0; 

 while((ch = fgetc(fpin)) != (int)'\n' && ch != EOF) 
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 { 

  *p++ = (char)ch; 

  chcnt++; 

 } 

 *p = 0; 

 if(chcnt>1 && *(p-1) == '\r') *(p-1)=0; 

 return(ch); 

} 

 

void main(argc, argv) 

int argc; 

char *argv[]; 

{ 

 int ch,chr; /* for character input */ 

 char *p,*q,cntbuf[512],labelbuf[512]; /* for character processing */ 

 int r,cnt,rivercnt[14000],atoi(); /* for river data */ 

 double X1[14000],Y1[14000],X2[14000],Y2[14000],atof(); /* for river data */ 

 double TopoX1,TopoY1,TopoX2,TopoY2; /* for Topographic data */ 

 double rr,rru,rrl,ss,ssu,ssl,Px,Py; /* for intersection caalculation */ 

 FILE *fp1, *fp2; /* two input files: River and Topographic data */ 

 

 if(argc == 2 &&  

   (strcmp(argv[1],"-?") == 0 || 

   strcmp(argv[1],"-h") == 0 || 

   strcmp(argv[1],"-H") == 0) 

  ) 

 { 

  printf("Usage : %s  Rivers.txt Topo.txt\n", argv[0]); 

  exit(0); 

 } 

 if(argc < 3) 

 { 

  printf("Usage : %s  Rivers.txt Topo.txt\n", argv[0]); 

  exit(0); 

 } 

 if( (fp1 = fopen( argv[1], "r" )) == NULL ) 

 { 

  perror( argv[1] ); 

  exit( 1 ); 

 } 

 if( (fp2 = fopen( argv[2], "r+" )) == NULL ) 

 { 

  perror( argv[2] ); 

  fclose(fp1); 

  exit( 1 ); 

 } 

/* Rivers.txt 

0 

455657.543535679,4641529.915645910 

455657.500015679,4641529.999997910 

end 

1 

455657.500015679,4641529.999997910 

455633.624943657,4641627.999998000 

end 

 */ 

 cnt=0; 

 ch = mygets(labelbuf,fp1); /* get first label */ 

 while( (ch = mygets(cntbuf,fp1)) != EOF) 

 { 

  rivercnt[cnt]=atoi(labelbuf); 

 

  p=&cntbuf[0]; q=p; 

  while(*q != ',') q++; *q++=0; 

  X1[cnt]=atof(p); Y1[cnt]=atof(q); 

 

  ch = mygets(cntbuf,fp1); /* get second point */ 

  p=&cntbuf[0]; q=p; 

  while(*q != ',') q++; *q++=0; 

  X2[cnt]=atof(p); Y2[cnt]=atof(q); 

 

  ch = mygets(cntbuf,fp1); /* get end */ 

 

  ch = mygets(labelbuf,fp1); /* get the label */ 

  p=&labelbuf[0]; 

  if(strcmp(p,"end")==0 || strcmp(p,"END")==0) 

     break; 

  cnt++; 

 

 } 

 fclose(fp1); 

 

 ch = mygets(labelbuf,fp2); /* get first label */ 

 while( (ch = mygets(cntbuf,fp2)) != EOF) 

 { 

  p=&cntbuf[0]; q=p; 

  while(*q != ',') q++; *q++=0; 

  TopoX1=atof(p); TopoY1=atof(q); 

 

  ch = mygets(cntbuf,fp2); /* get second point */ 

  p=&cntbuf[0]; q=p; 

  while(*q != ',') q++; *q++=0; 

  TopoX2=atof(p); TopoY2=atof(q); 

 

  ch = mygets(cntbuf,fp2); /* get end */ 

 

  /* this is the UTM limits of the entire basin 

   *   4706300 

   * 423100     462500 

   *   4641670 

   */ 

  /* leftX = MIN(TopoX1,TopoX2); rightX=MAX(TopoX1,TopoX2); */ 

  /* lowerY = MIN(TopoY1,TopoY2); upperY=MAX(TopoY1,TopoY2); */ 

  for(r=0; r<cnt; r++) 

  { /* 

   if(X1[r] < leftX && X2[r] < leftX) continue; 

   if(X1[r] > rightX && X2[r] > rightX) continue; 

   if(Y1[r] > upperY && Y2[r] > upperY) continue; 

   if(Y1[r] < lowerY && Y2[r] < lowerY) continue; 

   */ 

 rru = ((TopoY1-Y1[r])*(X2[r]-X1[r]))-((TopoX1-X1[r])*(Y2[r]-Y1[r])); 

 rrl = ((TopoX2-TopoX1)*(Y2[r]-Y1[r]))-((TopoY2-TopoY1)*(X2[r]-X1[r])); 

   if(rrl != 0) 

   { 

    rr = rru/rrl; /* egn1 */ 

 ssu = ((TopoY1-Y1[r])*(TopoX2-TopoX1))-((TopoX1-X1[r])*(TopoY2-TopoY1)); 

 ssl = ((TopoX2-TopoX1)*(Y2[r]-Y1[r]))-((TopoY2-TopoY1)*(X2[r]-X1[r])); 

    if(ssl != 0) 

    { 

     ss = ssu/ssl; /* eqn2 */ 

     if(rr >= 0 && rr <= 1 && ss >= 0 && ss <= 1) 

     { 

      Px=TopoX1+rr*(TopoX2-TopoX1); 

      Py=TopoY1+rr*(TopoY2-TopoY1); 

      fprintf(stdout,"%d\t%.10f\t%.10f\t%s\n", 

        rivercnt[r],Px,Py,labelbuf); 

     } 

    } 

   } 

    

/* taken from http://www.faqs.org/faqs/graphics/algorithms-faq/ 

    Let A,B,C,D be 2-space position vectors.  Then the directed line 

    segments AB & CD are given by: 

        AB=A+r(B-A), r in [0,1] 

        CD=C+s(D-C), s in [0,1] 

    If AB & CD intersect, then 

        A+r(B-A)=C+s(D-C), or 

        Ax+r(Bx-Ax)=Cx+s(Dx-Cx) 

        Ay+r(By-Ay)=Cy+s(Dy-Cy)  for some r,s in [0,1] 

    Solving the above for r and s yields 
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            (Ay-Cy)(Dx-Cx)-(Ax-Cx)(Dy-Cy) 

        r = -----------------------------  (eqn 1) 

            (Bx-Ax)(Dy-Cy)-(By-Ay)(Dx-Cx) 

            (Ay-Cy)(Bx-Ax)-(Ax-Cx)(By-Ay) 

        s = -----------------------------  (eqn 2) 

            (Bx-Ax)(Dy-Cy)-(By-Ay)(Dx-Cx) 

    Let P be the position vector of the intersection point, then 

        P=A+r(B-A) or 

        Px=Ax+r(Bx-Ax) 

        Py=Ay+r(By-Ay) 

    By examining the values of r & s, you can also determine some 

    other limiting conditions: 

        If 0<=r<=1 & 0<=s<=1, intersection exists 

            r<0 or r>1 or s<0 or s>1 line segments do not intersect 

        If the denominator in eqn 1 is zero, AB & CD are parallel 

        If the numerator in eqn 1 is also zero, AB & CD are collinear. 

    If they are collinear, then the segments may be projected to the x-  

    or y-axis, and overlap of the projected intervals checked. 

    If the intersection point of the 2 lines are needed (lines in this 

    context mean infinite lines) regardless whether the two line 

    segments intersect, then 

        If r>1, P is located on extension of AB 

        If r<0, P is located on extension of BA 

        If s>1, P is located on extension of CD 

        If s<0, P is located on extension of DC 

    Also note that the denominators of eqn 1 & 2 are identical. 

 

    References: 

 

    [O'Rourke (C)] pp. 249-51 

    [Gems III] pp. 199-202 "Faster Line Segment Intersection," 

 

    Computational Geometry in C (2nd Ed.) 

    Joseph O'Rourke, Cambridge University Press 1998,  

    ISBN 0-521-64010-5 Pbk, ISBN 0-521-64976-5 Hbk 

    Additional information and code at http://cs.smith.edu/~orourke/ . 

    */ 

  } 

 

  ch = mygets(labelbuf,fp2); /* get the label */ 

  p=&labelbuf[0]; 

  if(strcmp(p,"end")==0 || strcmp(p,"END")==0) 

     break; 

 } 

 

 fclose(fp2); 

} 

 

 

6.2 EXP2SHP LISTING 

 

  1: /* Contributions by this author are shown in BOLD 

  2:  * $Id: Exp2Shp.c,v 1.8 2000/06/12 13:23:35 jhudd Exp $ 
  3:  * 
  4:  *   Copyright (C) 1999 by Jan-Oliver Wagner <jan@intevation.de> 

  5:  *   Revised by JHuddleston to read ArgusONE Export files , e.g. 
  6:  *   ## Name: 
  7:  *   ## Icon:0 
  8:  *   # Points Count  Value 
  9:  *   6  251. 
 10:  *   # X pos  Y pos 
 11:  *   451948.814592741  4641468.11396978 
 12:  *   451634.812160449  4641683.50008198 
 13:  *   451361.607936195  4641820.47646611 
 14:  *   451357.23750419  4641741.82097803 
 15:  *   451751.296256557  4641455.23307377 
 16:  *   451948.814592741  4641468.11396978 

 17:  * 

 18:  *   This program is free software; you can redistribute it and/or 

 19:  *   modify it under the terms of the GNU General Public License 

 20:  *   as published by the Free Software Foundation; either version 2 

 21:  *   of the License, or (at your option) any later version. 

 22:  * 

 23:  *   This program is distributed in the hope that it will be useful, 

 24:  *   but WITHOUT ANY WARRANTY; without even the implied 

warranty of 

 25:  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR 

PURPOSE.  See the 

 26:  *   GNU General Public License for more details. 

 27:  * 

 28:  *   You should have received a copy of the GNU GPL 

 29:  *   along with this program; if not, write to the Free Software 

 30:  *   Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 

 31:  * 

 32:  */ 

 33: #include <stdio.h> 

 34: #include <stdlib.h> 

 35: #include <string.h> 

 36: #include <shapefil.h> 

 37:  

 38: #define VERSION "0.3.2" 

 39:  

 40: #ifdef DEBUG 

 41: #define DEBUG_OUT(str) fprintf(stderr,"Exp2Shp debug: " 
str) 
 42: #define DEBUG_OUT1(str,v) fprintf(stderr,"Exp2Shp debug: " 
str,v) 
 43: #define DEBUG_OUT2(str,v,w) fprintf(stderr,"Exp2Shp 
debug: " str,v,w) 
 44: #define DEBUG_OUT3(str,v,w,x) fprintf(stderr,"Exp2Shp 
debug: "str,v,w,x) 
 45: #else 

 46: #define DEBUG_OUT(str)  

 47: #define DEBUG_OUT1(str,v)  

 48: #define DEBUG_OUT2(str,v,w)  

 49: #define DEBUG_OUT3(str,v,w,x)  

 50: #endif 

 51:  

 52: /* Error codes for exit() routine: */ 

 53: #define  ERR_USAGE  1 

 54: #define ERR_TYPE  2 

 55: #define ERR_FORMAT  3 

 56: #define ERR_OBJECTTYPE  4 

 57: #define ERR_ALLOC  5 

 58:  

 59: #define ERR_DBFCREATE  10 

 60: #define ERR_DBFADDFIELD  11 

 61: #define ERR_DBFOPEN  12 

 62: #define  ERR_DBFWRITEINTEGERATTRIBUTE  13 

 63:  

 64: #define ERR_SHPOPEN  20 

 65:  

 66: /* Object Type codes used in main(): */ 

 67: #define OBJECTTYPE_NONE    0 

 68: #define OBJECTTYPE_POINT  1 

 69: #define OBJECTTYPE_LINE    2 

 70: #define OBJECTTYPE_POLYGON  3 

 71: #define OBJECTTYPE_ARCS    4 
 72:  

 73: /* minimum number of coordinates allocated blockwise */ 

 74: #define COORDS_BLOCKSIZE  100 

 75:  

 76: /* maximum length for read strings, 

 77:  * if input lines with more characters appear, 

 78:  * errors are likely to occur */ 

 79: #define STR_BUFFER_SIZE    300 

 80:  
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 81: #ifdef USE_STRICMP 

 82: #define CASE_INSENSITIVE_STR_CMP  stricmp 

 83: #else 

 84: #define CASE_INSENSITIVE_STR_CMP  strcasecmp 

 85: #endif 

 86: double atof(); 
 87: int getline(FILE *fp, char s[] ) 
 88: {  int c, i; 
 89:  
 90:   i=0; 
 91:   while ( (c=fgetc(fp))!=EOF && c!='\n' ) 
 92:     s[i++]=c; 
 93:   if(i>0 && s[i-1] == '\r') s[i-1]='\0';  
 94:   s[i]='\0'; 
 95:   return c; 
 96: } 
 97:  

 98: void print_version(FILE *file) 

 99: { 

100:   fprintf(file,"Exp2Shp version " VERSION "\n");  
101: #ifdef DEBUG 

102:   fprintf(file,"compiled with option: DEBUG\n");  

103: #endif 

104: } 

105:  

106: static DBFHandle LaunchDbf (  const char *fname ) { 

107:   DBFHandle  hDBF; 

108:   char    dbffname[STR_BUFFER_SIZE]; 

109:   char    fieldname[STR_BUFFER_SIZE]; 

110:  

111:   sprintf(dbffname, "%s.dbf", fname); 

112:   sprintf(fieldname, "%s-id", fname); 

113:  

114:   hDBF = DBFCreate( dbffname ); 

115:   if( hDBF == NULL ) { 

116:     fprintf(stderr, "DBFCreate(%s) failed.\n", fname ); 

117:     exit(ERR_DBFCREATE); 

118:   } 

119:  

120:   if (DBFAddField( hDBF, fieldname, FTInteger, 11, 0 ) == -1) { 

121:  fprintf(stderr,"DBFAddField(hDBF,%s,FTInteger,11,0)failed.\n", 

122:     fieldname);   exit(ERR_DBFADDFIELD); 

123:   } 

124:  

125:   DBFClose( hDBF ); 

126:  

127:   hDBF = DBFOpen( dbffname, "r+b" ); 

128:   if( hDBF == NULL ) { 

129:     fprintf(stderr, "DBFOpen(%s,\"r+b\") failed.\n", dbffname ); 

130:     exit(ERR_DBFOPEN); 

131:   } 

132:  

133:   return hDBF; 

134: } 

135:  

136: static SHPHandle LaunchShp(  const char *fname, 

137:         int ObjectType ) { 

138:   SHPHandle  hSHP; 

139:   SHPObject  *psShape; 

140:   char    shpfname[STR_BUFFER_SIZE]; 

141:  

142:   sprintf(shpfname, "%s.shp", fname); 

143:  

144:   switch (ObjectType) { 

145:     case OBJECTTYPE_POINT: 

146:       hSHP = SHPCreate( shpfname, SHPT_POINT ); 

147:       break; 

148:     case OBJECTTYPE_ARCS: 
149:       hSHP = SHPCreate( shpfname, SHPT_ARC ); 
150:       break; 

151:     case OBJECTTYPE_LINE: 

152:       hSHP = SHPCreate( shpfname, SHPT_ARC ); 

153:       break; 

154:     case OBJECTTYPE_POLYGON: 

155:       hSHP = SHPCreate( shpfname, SHPT_POLYGON ); 

156:       break; 

157:     default: 

158:       fprintf(stderr, "internal error: " 

159:         "unknown ObjectType=%d\n", ObjectType); 

160:       exit(ERR_OBJECTTYPE); 

161:   } 

162:  

163:   if( hSHP == NULL ) { 

164:     fprintf(stderr, "SHPOpen(%s, shape_type) failed.\n", shpfname ); 

165:     exit(ERR_SHPOPEN); 

166:   } 

167:  

168:   return hSHP; 

169: } 

170:  

171: static void WriteDbf (  DBFHandle hDBF, 

172:       int rec, 

173:       int id ) { 

174:   if (! DBFWriteIntegerAttribute(hDBF, rec, 0, id)) { 

175:     fprintf(stderr, "DBFWriteIntegerAttribute(hDBFs,%d,1,%d) 

176:     failed.\n", rec, id );  

exit(ERR_DBFWRITEINTEGERATTRIBUTE); 

177:   } 

178: } 

179:  

180: static void WritePoint(  SHPHandle hSHP, 

181:       int rec, 

182:       double x, 

183:       double y ) { 

184:   SHPObject  *psShape; 

185:  

186:   psShape = SHPCreateObject( SHPT_POINT, rec, 0, NULL, 

NULL, 

187:                                1, &x, &y, NULL, NULL ); 

188:   SHPWriteObject( hSHP, -1, psShape ); 

189:   SHPDestroyObject( psShape ); 

190: } 

191:  

192: static void WriteLine(  SHPHandle hSHP, 

193:       int rec, 

194:       int coords, 

195:       double * x, 

196:       double * y ) { 

197:   SHPObject  *psShape; 

198:  

199:   psShape = SHPCreateObject( SHPT_ARC, rec, 0, NULL, NULL, 

200:     coords, x, y, NULL, NULL ); 

201:   SHPWriteObject( hSHP, -1, psShape ); 

202:   SHPDestroyObject( psShape ); 

203: } 

204:  

205: static void WritePolygon(  SHPHandle hSHP, 

206:         int rec, 

207:         int coords, 

208:         double * x, 

209:         double * y, 

210:         int nparts, 

211:         int * partstarts) { 

212:   SHPObject  *psShape; 

213:  

214: DEBUG_OUT1("WritePolygon: rec = %d\n", rec); 

215: DEBUG_OUT1("WritePolygon: nparts = %d\n", nparts); 

216: DEBUG_OUT1("WritePolygon: coords = %d\n", coords); 

217:  
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218:   psShape = SHPCreateObject( SHPT_POLYGON, rec, nparts, 

partstarts, 

219:     NULL,coords, x, y, NULL, NULL ); 

220:   SHPWriteObject( hSHP, -1, psShape ); 

221:   SHPDestroyObject( psShape ); 

222: } 

223:  

224: /* read from fp and generate point shapefile to hDBF/hSHP */ 

225: static void GeneratePoints (  FILE *fp, 

226:         DBFHandle hDBF, 

227:         SHPHandle hSHP ) { 

228:   char linebuf[STR_BUFFER_SIZE];/*buffer for reading from 

file*/ 

229:   int id;      /* ID of point */ 

230:   double x, y;    /* coordinates of point */ 

231:   char * str;    /* tmp variable needed for assertions */ 

232:   char * dstr;    /* tmp variable needed to find out substrings */ 

233:   int rec = 0;    /* Counter for records */ 

234:   char *p,*q; 
235:   int chr; 
236: /* 
237: ## Name: 
238: ## Icon:0 
239: # Points Count  Value 
240: 2  310. 
241: # X pos  Y pos 
242: 438048.75  4673090 
243: */ 
244:   while (chr = getline(fp, linebuf) != EOF) { 
245:     if (linebuf[0] == '#' || linebuf[0] == '\0') continue; 
246:     q=&linebuf[0]; while (*q != '\t') q++; *q++=0; 
247:     p=q; while(*q != 0) q++; if(*(q-1) == '.') *(q-1)=0; 
248:     id = atoi(p); 
249:     chr = getline(fp, linebuf); if(chr == EOF) break;  
250:  
251:     /* get the data */ 
252:     while (chr = getline(fp, linebuf) != EOF) { 
253:       if (linebuf[0] == '#' || linebuf[0] == '\0') break; 
254:       q=p=&linebuf[0]; while (*q != '\t') q++; *q++=0; 
255:       x = atof(p); y=atof(q); 
256:       DEBUG_OUT3("id=%d, x=%f, y=%f\n", id, x, y); 
257:       WriteDbf(hDBF, rec, id); 
258:       WritePoint(hSHP, rec, x, y); 
259:       rec ++; 
260:     } 
261:     if(chr == EOF) break; 
262:   } 

263: } 

264:  

265: /* read from fp and generate line/arc shapefile to hDBF/hSHP */ 

266: static void GenerateLines (  FILE *fp, 

267:         DBFHandle hDBF, 

268:         SHPHandle hSHP ) { 

269:   char linebuf[STR_BUFFER_SIZE];/*buffer for reading from 

file*/ 

270:   int id;      /* ID of point */ 

271:   double  * x = NULL, 

272:     * y = NULL;  /* coordinates arrays */ 

273:   int vector_size = 0;  /* current size of the vectors x and y */ 

274:   char * str;    /* tmp variable needed for assertions */ 

275:   char * dstr;    /* tmp variable needed to find out substrings */ 

276:   int rec = 0;    /* Counter for records */ 

277:   int coord = 0;    /* Counter for coordinates */ 

278:   char *p, *q; 
279:   int chr; 
280:  
281: /* 
282: ## Name: 
283: ## Icon:0 
284: # Points Count  Value 

285: 2  310. 
286: # X pos  Y pos 
287: 438048.75  4673090 
288: */ 
289:   while (chr = getline(fp, linebuf) != EOF) { 
290:     if (linebuf[0] == '#' || linebuf[0] == '\0') continue; 
291:     q=&linebuf[0]; while (*q != '\t') q++; *q++=0; 
292:     p=q; while(*q != 0) q++; if(*(q-1) == '.') *(q-1)=0; 
293:     id = atoi(p); 
294:     DEBUG_OUT1("id=%d\n", id); 

295:     chr = getline(fp, linebuf); if(chr == EOF) break;  
296:  

297:     coord = 0; 

298:  

299:     /* loop coordinates of line 'id' */ 

300:     while (chr = getline(fp, linebuf) != EOF) { 
301:       if (linebuf[0] == '#' || linebuf[0] == '\0') break; 
302:       /* allocate coordinate vectors if to small */ 
303:       if (vector_size <= coord) { 

304:         vector_size += COORDS_BLOCKSIZE; 

305:         x = realloc(x, vector_size * sizeof(double)); 

306:         y = realloc(y, vector_size * sizeof(double)); 

307:         if (x == NULL || y == NULL) { 

308:           fprintf(stderr, "memory allocation failed\n"); 

309:           exit(ERR_ALLOC); 

310:         } 

311:       } 

312:       q=p=&linebuf[0]; while (*q != '\t') q++; *q++=0; 
313:       x[coord] = atof(p); y[coord]=atof(q); 
314:       DEBUG_OUT2("x=%f, y=%f\n", x[coord], y[coord]); 
315:       coord ++; 

316:     } 

317:     WriteDbf(hDBF, rec, id); 

318:     WriteLine(hSHP, rec, coord, x, y); 

319:     rec ++; 

320:     if(chr == EOF) break; 
321:   } 
322:   free(x); 
323:   free(y); 
324: } 
325:  
326: /* read from fp and generate line/arc shapefile to hDBF/hSHP 
*/ 
327: static void GenerateArcs (  FILE *fp, 
328:         DBFHandle hDBF, 
329:         SHPHandle hSHP ) { 
330:   char linebuf[STR_BUFFER_SIZE];/*buffer for reading from 
file*/ 
331:   int id;      /* ID of point */ 
332:   double  * x = NULL, 
333:     * y = NULL;  /* coordinates arrays */ 
334:   int vector_size = 0;  /* current size of the vectors x and y */ 
335:   char * str;    /* tmp variable needed for assertions */ 
336:   char * dstr;    /* tmp variable needed to find out substrings */ 
337:   int rec = 0;    /* Counter for records */ 
338:   int coord = 0;    /* Counter for coordinates */ 
339:   char *p, *q; 
340:   int chr; 
341:  
342:   if (vector_size <= coord) { 
343:     vector_size += COORDS_BLOCKSIZE; 
344:     x = realloc(x, vector_size * sizeof(double)); 
345:     y = realloc(y, vector_size * sizeof(double)); 
346:     if (x == NULL || y == NULL) { 
347:       fprintf(stderr, "memory allocation failed\n"); 
348:       exit(ERR_ALLOC); 
349:     } 
350:   } 

351: /* 
352: ## Name: 
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353: ## Icon:0 
354: # Points Count  Value 
355: 2  310. 
356: # X pos  Y pos 
357: 438048.75  4673090 
358: */ 
359:   while (chr = getline(fp, linebuf) != EOF) { 
360:     if (linebuf[0] == '#' || linebuf[0] == '\0') continue; 
361:     q=&linebuf[0]; while (*q != '\t') q++; *q++=0; 
362:     p=q; while(*q != 0) q++; if(*(q-1) == '.') *(q-1)=0; 
363:     id = atoi(p); 
364:     DEBUG_OUT1("id=%d\n", id); 
365:     chr = getline(fp, linebuf); if(chr == EOF) break;  
366:  
367:     chr = getline(fp, linebuf); if(chr == EOF) break; 
368:     if (linebuf[0] == '#' || linebuf[0] == '\0') break; 
369:     q=p=&linebuf[0]; while (*q != '\t') q++; *q++=0; 
370:     x[0] = atof(p); y[0]=atof(q); 
371:     DEBUG_OUT2("x=%f, y=%f\n", x[0], y[0]); 
372:     coord=2; 
373:     while (chr = getline(fp, linebuf) != EOF) { 
374:       if (linebuf[0] == '#' || linebuf[0] == '\0') break; 
375:       q=p=&linebuf[0]; while (*q != '\t') q++; *q++=0; 
376:       x[1] = atof(p); y[1]=atof(q); 
377:       DEBUG_OUT2("x=%f, y=%f\n", x[1], y[1]); 
378:       WriteDbf(hDBF, rec, id); 
379:       WriteLine(hSHP, rec, coord, x, y); 
380:       x[0]=x[1]; y[0]=y[1]; 
381:       rec ++; 
382:     } 
383:     if(chr == EOF) break; 
384:   } 
385:   free(x); 

386:   free(y); 

387: } 

388:  

389: /* read from fp and generate polgon shapefile to hDBF/hSHP */ 

390: static void GeneratePolygons (  FILE *fp, 

391:         DBFHandle hDBF, 

392:         SHPHandle hSHP ) { 

393:   char linebuf[STR_BUFFER_SIZE];/*buffer for reading from 

file*/ 

394:   int id = -1;      /* ID of polygon */ 
395:   double  * x = NULL, 

396:     * y = NULL;  /* coordinates arrays */ 

397:   int vector_size = 0;  /* current size of the vectors x and y */ 

398:   int nparts = 0; /* number of parts */ 

399:   int * partstarts = NULL; /* new parts start in x[],y[] */ 

400:   char * str;    /* tmp variable needed for assertions */ 
401:   char * dstr;    /* tmp variable needed to find out substrings */ 
402:   int rec = 0;    /* Counter for records */ 

403:   int coord = 0;    /* Counter for coordinates */ 

404:   char *p, *q; 

405:   int chr; 

406:  

407: /* 
408: ## Name: 
409: ## Icon:0 
410: # Points Count  Value 
411: 2  310. 
412: # X pos  Y pos 
413: 438048.75  4673090 
414: */ 
415:   while (chr = getline(fp, linebuf) != EOF) { 
416:     if (linebuf[0] == '#' || linebuf[0] == '\0') continue; 
417:     q=&linebuf[0]; while (*q != '\t') q++; *q++=0; 
418:     p=q; while(*q != 0) q++; if(*(q-1) == '.') *(q-1)=0; 
419:     id = atoi(p); 
420:     DEBUG_OUT1("id=%d\n", id); 
421:     coord = 0; 

422:     nparts = 0; 
423:     chr = getline(fp, linebuf); if(chr == EOF) break;  
424:  
425:     partstarts = realloc(partstarts, sizeof(int) * (nparts+1)); 
426:     if (partstarts == NULL) { 
427:       fprintf(stderr, "memory allocation failed\n"); 
428:       exit(ERR_ALLOC); 
429:     } 

430:  

431:     while (chr = getline(fp, linebuf) != EOF) { 
432:       if (linebuf[0] == '#' || linebuf[0] == '\0') break; 
433:       /* allocate coordinate vectors if to small */ 
434:       if (vector_size <= coord) { 

435:         vector_size += COORDS_BLOCKSIZE; 

436:         x = realloc(x, vector_size * sizeof(double)); 

437:         y = realloc(y, vector_size * sizeof(double)); 

438:         if (x == NULL || y == NULL) { 

439:           fprintf(stderr, "memory allocation failed\n"); 

440:           exit(ERR_ALLOC); 

441:         } 

442:       } 

443:       q=p=&linebuf[0]; while (*q != '\t') q++; *q++=0; 
444:       x[coord] = atof(p); y[coord]=atof(q); 
445:       DEBUG_OUT2("x=%f, y=%f\n", x[coord], y[coord]); 
446:       coord ++; 

447:     } 

448:     partstarts[nparts] = coord; 
449:     DEBUG_OUT1("newpart at %d\n", coord); 
450:     WriteDbf(hDBF, rec, id); 

451:     if (partstarts) partstarts[0] = 0; 

452:     WritePolygon(hSHP,rec,coord,x,y,(nparts>0 ? nparts+1 : 0),  

453:     partstarts); free(partstarts); partstarts = NULL; 
454:     rec ++; 
455:     if(chr == EOF) break; 
456:   } 

457:   free(partstarts); 

458:   free(x); 

459:   free(y); 

460: } 

461:  

462: int main(  int argc, 

463:     char ** argv ) { 

464:   DBFHandle hDBF;    /* handle for dBase file */ 

465:   SHPHandle hSHP;    /* handle for shape files .shx and .shp */ 

466:   int ObjectType = OBJECTTYPE_NONE; 

467:  

468:   if (argc != 3) { 

469:     print_version(stderr); 

470:     fprintf(stderr, "usage: %s outfile type < infile\n", argv[0]); 

471:     fprintf(stderr, "\treads stdin and creates outfile.shp, " 

472:       "outfile.shx and outfile.dbf\n" 

473:       "\ttype must be one of these: points arcs lines polygons\n" 
474:       "\tinfile must be in ArgusONE 'Exp' export format\n"); 
475:     fprintf(stderr, "points are single x,y coordinates,\n"); 
476:     fprintf(stderr, "arcs are split into separate polylines,\n"); 
477:     fprintf(stderr, "lines are groups of polylines,\n"); 
478:     fprintf(stderr, "polygons cover an entire area.\n"); 
479:     exit(ERR_USAGE); 

480:   } 

481:  

482:   /* determine Object Type: */ 

483:   if (strcmp(argv[2], "points") == 0) ObjectType = 

OBJECTTYPE_POINT; 

484:   if (strcmp(argv[2], "arcs") == 0) ObjectType = 
OBJECTTYPE_ARCS; 
485:   if (strcmp(argv[2], "lines") == 0) ObjectType = 

OBJECTTYPE_LINE; 

486:   if (strcmp(argv[2], "polygons") == 0) ObjectType =  

487:    OBJECTTYPE_POLYGON; if (ObjectType == 

OBJECTTYPE_NONE) { 
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488:     fprintf(stderr, "type '%s' unknown, use one of these: " 

489:       "points arcs lines polygons.\n", argv[2]); 
490:     fprintf(stderr, "where: points are single x,y coordinates,\n"); 
491:     fprintf(stderr, "arcs are split into separate polylines,\n"); 
492:     fprintf(stderr, "lines are groups of polylines,\n"); 
493:     fprintf(stderr, "polygons cover an entire area.\n"); 
494:     exit(ERR_TYPE); 

495:   } 

496:  

497:   DEBUG_OUT1("outfile=%s\n", argv[1]); 

498:   DEBUG_OUT1("type=%s\n", argv[2]); 

499:  

500:   /* Open and prepare output files */ 

501:   hDBF = LaunchDbf(argv[1]); 

502:   hSHP = LaunchShp(argv[1], ObjectType); 

503:  

504:   /* Call generate function */ 

505:   switch (ObjectType) { 

506:     case OBJECTTYPE_POINT: 

507:       GeneratePoints(stdin, hDBF, hSHP); 

508:       break; 

509:     case OBJECTTYPE_ARCS: 
510:       GenerateArcs(stdin, hDBF, hSHP); 
511:       break; 
512:     case OBJECTTYPE_LINE: 

513:       GenerateLines(stdin, hDBF, hSHP); 

514:       break; 

515:     case OBJECTTYPE_POLYGON: 

516:       GeneratePolygons(stdin, hDBF, hSHP); 

517:       break; 

518:     default: 

519:       fprintf(stderr, "internal error: " 

520:         "unknown ObjectType=%d\n", ObjectType); 

521:       exit(ERR_OBJECTTYPE); 

522:   } 

523:  

524:   /* Finish output files */ 

525:   DBFClose( hDBF ); 

526:   SHPClose( hSHP ); 

527:  

528:   /* success */ 

529:   exit(0); 

530: } 
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