
Paper 1199 Title

Groundwater Modeling of the Upper Skunk Basin

Author

John M. Huddleston, PE, PhD

Paper Abstract

Groundwater modeling of a 156,000 hectare basin in IOWA was made possible by

intersection of hypsography (contours) and hydrography (river) data layers to determine

elevations of the rivers. The elevation of the river is needed as input prescribed heads for

the groundwater model. In order to intersect the river and contour data the river and

contour data were exported into a GEN file using ArcMAP and a plug-in called ET

GeoWizards. The exported files resemble the ArcInfo Generate (GEN) format. A new

procedure was devised to intersect the river and contour polylines. The non-trivial logic

had been worked out by others at www.faqs.org. The data used for the study is hosted

on the IOWA Department of Natural Resources (DNR) Web site (ftp.igsb.uiowa.edu).

ii

TABLE OF CONTENTS

CHAPTER 1

GENERAL INTRODUCTION

1.1 INTRODUCTION.. 1

1.2 DEFINITION OF THE PROBLEM... 1

1.3 OBJECTIVE .. 2

1.4 LAYOUT OF PAPER 1199... 2

CHAPTER 2

INVERSE MODELING

2.1 UNCERTAINTY ... 3

2.2 OPTIMIZATION ... 3

2.3 OPTIMIZATION APPLIED TO GROUNDWATER MODELING 3

CHAPTER 3

AVAILABLE SOURCES OF DATA

3.1 INTRODUCTION.. 5

3.2 USDA NATIONAL SOIL TILTH LAB .. 5

3.3 IOWA DEPARTMENT OF NATURAL RESOURCES... 5

CHAPTER 4

GIS MODELING OF THE UPPER SKUNK BASIN

4.1 ESTABLISHING THE FORWARD MODEL .. 6

4.2 UPPER SKUNK GROUNDWATER MODEL DATA ... 8

4.3 UPPER SKUNK GROUNDWATER MODELING RESULTS 8

4.4 SUMMARY OF THE UPPER SKUNK GROUNDWATER MODELING 9

CHAPTER 5

CONCLUSION

5.1 ANALYSIS .. 10

5.2 RESULTS .. 10

CHAPTER 6

APPENDICES

6.1 C LISTING... 10

6.2 EXP2SHP LISTING .. 12

CHAPTER 7

REFERENCES... 17

1.0 GENERAL INTRODUCTION

1.1 INTRODUCTION

Groundwater modeling of a large basin of

156,000 hectares, the Upper Skunk River basin

in Iowa, would take years of analysis if it were

not for Geographical Information System (GIS)

data. Even then the level of accuracy for the

output results is only as good as the input data.

To improve on the accuracy of the input data, a

groundwater model of a 5,200 hectare Walnut

Creek watershed within the Upper Skunk basin

was created (Huddleston, 1984). Using the

USGS MODFLOW 2000 FORTRAN model

and detailed GIS data from the National Soil

Tilth Lab in Ames, Iowa an inverse model was

created for Walnut Creek. Walnut Creek was

modeled as a two layer unconfined system. The

results from the MODFLOW 2000 least squares

(LSG) inverse procedure did not agree with

published data. The LSG procedure was

replaced with a Least sum Absolute Deviation

regression and Expectation Maximization

(LAD-EM) procedure. The LAD-EM

MODFLOW results were in agreement with

published data. The results of both inverse

models were incorporated into a groundwater

model of the larger encompassing Upper Skunk

River basin. The problems of applying small

watershed parameters to a larger encompassing

basin will be discussed. Both the Walnut Creek

watershed and the Upper Skunk River basin are

to be modeled using ArgusONE GIS interface to

MODFLOW. The issues related to GIS

modeling will be solved using ESRI, ET

GeoWizards, and compiled C software.

1.2 DEFINITION OF THE PROBLEM

The Walnut Creek watershed in north

central Iowa is 5178.8 hectares. Walnut Creek

watershed is primarily an agricultural watershed

within the low-relief landscape of the Des

Moines Lobe.

Figure 1.1 Landform Regions In Iowa

Eight years of rainfall, runoff, and groundwater

observations are available for the Walnut Creek

watershed. However, while literature cites

estimates of the hydraulic conductivity for this

area, a more detailed number is required to

match groundwater model output with observed

data.

The problem of determining the hydraulic

conductivity is referred to as the inverse

problem. Inverse modeling is a two step process

as the inverse model is run to calculate the

parameters and then a forward model is run with

the new parameters. Before MODFLOW 2000

was released, experienced groundwater

modelers used trial and error approaches to

estimate the parameters. The number and

combinations of parameter adjustments are not

bounded making “trial and error” a time

consuming process. In addition, the

combination of parameters to fit a solution is

nearly infinite. In the end, the modeler

recognizes that the model fits the observed

conditions but the input parameters may be one

of many sets in their model to generate output

that fits the observed data.

Automated inverse models identify

unknown model parameters by using

mathematical optimization techniques. The most

important technique is to minimize the model

forward parameter. This minimization is carried

2

out over a geographically defined domain using

a user specified grid cell size. The forward

parameter in a groundwater flow model is the

hydraulic conductivity. When the maximum

value of any one cell of a model computed

hydraulic conductivity is less than a pre-defined

tolerance, then the inverse model is said to

converge.

When convergence of the forward

parameter does not occur, the groundwater flow

inverse model will minimize an objective

function based on pressure head. Initial forward

parameter estimates are used, the forward model

is run, the objective function is evaluated, and

new estimates of the forward parameter are used

for a new forward model run. The cycle

continues until the objective function criteria

have been met.

When the forward parameter cannot be

minimized and the objective function does not

converge to a minimum tolerance, the process is

terminated after a user specified number of

cycles. If this occurs, the groundwater model

itself will have to be re-architected.

1.3 OBJECTIVE

The objective is to provide a groundwater

model of the Upper Skunk basin. Results of the

inverse modeling for the smaller Walnut Creek

watershed (Huddleston, 2004) are used to define

the hydraulic conductivity for the aquifer layer.

GIS data is used to define the elevation of the

bedrock topology, surface contours, watershed

domain, and streams for the Upper Skunk

groundwater model. MODFLOW 2000 by itself

does not contain a geospatial interface; however

there are several to choose from in the

commercial sector.

ArgusONE is one of the geospatial

interfaces that can be used to pre-process

hydrography, hypsography elevation data, and

rainfall data as input into MODFLOW 2000.

This ArgusONE (http://www.argusint.com)

interface also performs post processing of the

MODFLOW 2000 output for graphic and image

analysis.

Modeling of Walnut Creek watershed

(Huddleston, 1984) determined that the forward

parameters computed by the MODFLOW 2000

LSG procedure predicted a confined

groundwater aquifer. Using a modified

MODFLOW 2000 LAD-EM procedure, a

second set of forward parameters was calculated

predicting an unconfined aquifer. Both sets of

forward parameters (hydraulic conductivity)

will be used in the Upper Skunk river

groundwater model.

1.4 LAYOUT OF PAPER 1199

Chapter 2 will present the theory behind

the inverse modeling. Normally, inverse

modeling theory would not be presented within

a geospatial paper; however, the groundwater

modeling will be performed with two sets of

results from MODFLOW 2000. For

completeness, both the LSG and LAD-EM

theory is presented. Chapter 3 will discuss the

available sources of GIS data. Chapter 4 will

present the GIS solution for modeling the Upper

Skunk basin. Analysis of model results and

comparisons between the groundwater model

results of the differing sets of forward

parameters will be discussed. Chapter 5 presents

a summary of the analysis and results. Chapter 6

contains a listing of the source code. Chapter 7

contains a compendium of references for this

topic.

3

2.0 INVERSE MODELING

2.1 UNCERTAINTY

Uncertainty in the subsurface distribution

of hydrogeologic properties can be broken into

two components: geologic uncertainty and

parameter uncertainty. Geologic uncertainty

refers to the uncertainty in the location of the

aquifer units and aquitards, as well as the

uncertainty in the boundary conditions.

Parameter uncertainty denotes the

uncertainty in the values of the hydrogeologic

parameters throughout the spatial domain.

Inferring properties about parameters fall into

two categories: parametric and nonparametric.

In parametric statistics, the mean is the usual

statistic used to indicate average value of a

population or sample. If the mean is combined

with the standard deviation, then the pair of

numbers indicates both the central tendency of

the group of numbers and the spread. A large

standard deviation reflects a large spread in the

data; that is, the numbers are diverse and far

apart. A small standard deviation reflects a

tightness of the data. A plot of the data in a

histogram creates a graph that looks like the

well-known bell-shaped curve if it is normally

distributed.

If data fit a normal distribution, the mean

and the standard deviation can be combined to

provide confidence intervals on the population.

This information is often used to create a range

of values in which you might expect future

sampled data to appear. More precisely,

/2 /2X - z X X + z
n n

α α

σ σ
≤ µ ≤ ≤

 2.1

in which X is the sample mean, / 2zα are values

of random variables having a standard normal

distribution; α is the level of significance; and

σ is the standard deviation of the population n.

This confidence interval represents a means of

providing a range of values in which the true

value can be expected to lie.

To employ parametric statistical tests, the

data must be on an interval scale, continuous,

and normally distributed

The spatially variable parameters of most

interest in groundwater inverse applications

include hydraulic conductivity (K) for

unconfined aquifers or transmissivity for

confined aquifers (transmissivity T=KD, where

D is the thickness of the confined aquifer),

storage coefficients (S), groundwater recharge

and discharge, fluxes and piezometric heads on

designated boundaries, and chemical rate

coefficients. All of these parameters are

uncertain, but some may have a greater effect on

predictions than others in any given application.

Usually it is not advisable to include recharge as

a fitting parameter but rather to estimate

recharge based on precipitation,

evapotranspiration, infiltration, and surface

runoff calculations.

2.2 OPTIMIZATION

Statistical optimization differs somewhat

from the theorems provided for finding the

minima and maxima of an explicit function. For

the explicit function, there are only two

elements, the function and the unknown(s). For

statistical optimization, the function to be

optimized is called the objective function, which

is an explicit mathematical function that

describes what is considered to be the optimal

solution. Second, there is a mathematical model

that relates a random variable, called the

criterion or dependent variable, to a vector of

unknowns and a vector of predictor variables,

called independent variables. The predictor

variables usually have a causal relationship with

the criterion variable. The third element of

statistical optimization is the data set. The data

set consists of measured values of the criterion

variable and the predictor variable(s).

There are three general categories that can

be used to classify optimization techniques:

analytical, numerical, and subjective.

Analytical optimization uses analytical calculus

in deriving the unknowns from the objective

4

function. Analytic solutions provide a direct

and exact solution for simple model structures.

However, they do not necessarily guarantee

optimality since the vanishing differential may

be a local minimum, maximum, valley, ridge, or

saddle point.

Numerical optimization evaluates

coefficients using computational techniques

such as regression. Numerical optimization

techniques include matrix and linear

programming approaches. In problems that can

be solved using a matrix approach to least

absolute deviation or least squares, there is a

single value that minimizes the sums.

Subjective optimization is a trial and error

process that relies heavily on the user’s

experience.

The error, or residual, is defined here as

the difference between the predicted and

measured value of the criterion value. As such,

a positive residual indicates over prediction.

Using a Manhattan distance model,

i1
i

x = x∑ and given a system of equations

Ax = b, the least absolute deviation regression

estimate that minimizes the error

x 1
x̂ = argmin b - Ax is shown as follows:

i ij j

i j

f (x) = b Ax = b - a x− ∑ ∑ 2.2

The minimum can be found by differentiating

f(x) and setting the result to 0

()
i ij jm

j

ik

i 1k

i ij j

j

ˆb - a x
f

ˆ(x) = a = 0, k=1,2,...,n
x

ˆb - a x
=

∂
−

∂

∑
∑

∑

 2.3

Equation 2.3 can be rearranged as

ik ij jik i

i i ji

ˆa a xa b
 = , k=1,2,...,n

ˆ ˆe (x) e(x)
∑ ∑∑ 2.4

Equation 2.4 can be expressed in matrix

notation as:

T T -1ˆ ˆ ˆ ˆ ˆA E(x)b = A E(x)Ax, where E(x) = Diag(e(x))

 2.5

If T ˆA E(x)A is invertible, then the estimate can

be found as:

()
-1

T Tˆ ˆ ˆx = A E(x)A A E(x)b 2.6

Using an Euclidean distance model,
1

2
2

i2
i

x = x

∑ and given the system Ax = b,

the least squares regression estimate that

minimizes the error
2

x 2
x = argmin b - Ax is

shown as follows:

()
2

2

i ij j2
i j

f x = b - Ax = b - a x

∑ ∑ 2.7

The minimum can be found by differentiating

f(x) and setting the result to 0

() ()i ij j ik

i j

f
x = 2 b - a x a = 0, k=1,2,...,n

x

 ∂
−

∂
∑ ∑

 2.8

Equation 2.8 can be rearranged as follows:

ik i ik ij j

i i j

a b = a a x , k = 1,2,...,n∑ ∑∑ 2.9

Equation 2.9 can be expressed in matrix

notation as:

T TA b = A Ax 2.10

If TA A is invertible, then the estimate can be

found as:

()
-1

T Tx = A A A b 2.11

In the generation of a solution of equation 2.11,

several problems may be encountered. It is

possible that the sequence does not converge.

Also, matrix A
T
A may be near singular

(elements very close to zero), and a solution

5

cannot be obtained. Finally, the displacement

vector ∆x may become so large that parameter

values are no longer in the admissible region.

In order to avoid these difficulties, it is

necessary to modify equation 2.11 to guarantee

convergence. The modification includes an

additional term added to A
T
A to avoid the

singularity:

� ()
-1

T T

Mx = A A+λ I A b 2.12

where λM is a coefficient and I is the unit

matrix. The MODFLOW 2000 inverse

procedure uses an algorithm based on Dennis et

al. (1981) for estimating the additional term.

2
T

M k

i j

Y
λ I = A w A -

b b

∂

∂ ∂
 2.13

The estimate is the difference between T

k kA wA

and the Hessian matrix equation defined in Hill,

1992, Sun, 1994, and Huddleston, 2004 where

w is a matrix of weights.

3.0 AVAILABLE SOURCES OF DATA

3.1 INTRODUCTION

The study area references for the geology

and hydrogeology in this paper are: the

Geological Society of Iowa Guidebook 58

(Simpkins, 1993); Iowa Department of Natural

Resources Geologic Survey Bureau Guidebook

Series No. 20 (Simpkins, 1996); the State of

Iowa Department of Natural Resources web

pages (www.iowadnr.com); the Iowa Geological

Survey Open File Reports 82-8 WRD for Boone

County and 82-85 WRD for Story County

(Thompson, 1982); and the USDA ARS Walnut

Creek Watershed Research Protocol Report

(Sauer and Hatfield, 1994).

3.2 USDA NATIONAL SOIL TILTH LAB

Detailed GIS data is made possible for

Walnut Creek as a result of the work of the

USDA National Soil Tilth Lab in Ames, Iowa.

Coverages of the Walnut Creek watershed are

available in NAD83 format. Many of these were

created by Wolfgang Oesterreich. These are

located in Walnut Creek Watershed, Boone &

Story Counties, Iowa. The data has been

projected from NAD27 to NAD83. The Trimble

Pathfinder Professional GPS model

ASSETSURVEYOR DATA COLLECTION

program was used to spotcheck accuracy of the

GIS data. The accuracy of the data is one meter.

A grid of elevations in-and-around Walnut

Creek Watershed, Boone & Story Counties,

Iowa was created by Jon Pickus, Lockheed, Las

Vegas, NV for EPA using the Grid KRIGING

method. The projection is UTM. The zone is

north 15. The units are meters. This data was

also used to verify the data.

3.3 IOWA DEPARTMENT OF NATURAL

RESOURCES

The Iowa Department of Natural

Resources Natural Resources (DNR) began

development of the Natural Resources

Geographic Information System (NRGIS)

following passage of the 1987 Groundwater

Protection Act. This legislation included

provisions for developing a Geographic

Information System (GIS) because it recognized

that GIS technology successfully was being

employed to assess complex natural resource

and environmental problems. Further, it could

be used to develop information for the public to

help explain these issues. The groundwater

legislation also required DNR to develop a map

depicting the vulnerability of groundwater to

contamination. Thus, DNR initially focused

much of its GIS activities towards the issue of

groundwater contamination and development of

the map product, Groundwater Vulnerability

Regions of Iowa. The GIS data developed for

this project became the foundation of the

NRGIS.

The main FTP internet resource site for

NRGIS is ftp://ftp.igsb.uiowa.edu/pub/gisdata/.

The NRGIS Library is the cornerstone to the

department's GIS capability. It is an organized

collection of geographically referenced

databases. The databases are thoroughly

6

documented and available to all NRGIS users.

The NRGIS Library currently contains 384 PC

Arc/Info coverages that are organized by

geographic extent: statewide, county or

regional. Practical factors were used to

determine the geographic extent of each

coverage; factors included database size and

anticipated usage. A number of coverages are

based on geographic themes including

boundaries of the state, counties, townships,

sections, and towns. Resource-related themes

are developed in coverages such as rivers,

topography, roads, and geology. Examples of

some specific themes in the NRGIS Library

include public water supplies, waste disposal

sites, plugged water wells and registered

underground storage tanks.

The coverages of interest for groundwater

modeling are the hydrography and hypsography

data containing river locations, surface and

bedrock elevations. In Figure 3.1 below, the

three counties Boone, Hamilton, and Story are

shown against a backdrop of the state basins.

Figure 3.1 Hypsography data for three counties

in Iowa

4.0 GIS MODELING OF THE UPPER SKUNK

BASIN

4.1 ESTABLISHING THE FORWARD

MODEL

The ArgusONE geospatial interface and

USGS MODFLOW Plug-In Extension is used

to create a forward groundwater model of the

Upper Skunk River basin of 155,998 hectares

(or 602.32 square miles). A grid of 1965 meters

was used to discretize the basin. The recharge

will be the 13 linear periods of recharge over an

eight-year period that was used in the Walnut

Creek model. There will be two geologic

layers: one, an upper oxidized late Wisconsinan

till; and two, a lower unoxidized late

Wisconsinan till. The area fits within Universal

Transverse Mercator Zone 15. It is centrally

located within the Des Moines Lobe.

The steps for data creation required

manipulation of Geographic Information System

(GIS) data. The Iowa Department of Natural

Resources (DNR) hypsography contour

shapefiles for Boone, Story, and Hamilton

counties were imported as an image. The Iowa

GIS has a data map projection of Universal

Transverse Mercator (UTM) Zone 15 and a

North American Datum of 1927 (NAD27).

The boundary outline (domain) for the

basin was delineated within ArgusONE using

the contours as a visual guide. This ArgusONE

domain outline was exported to a file. The

export file resembles the Arc/INFO Generate

(GEN) format. The format is so close to the

GEN format that the public domain GEN2SHP

program was modified to convert the

ArgusONE export format file into a shapefile.

Chapter 6 Section 2 has the listing of the

converted program “EXP2SHP”. The exported

domain file was converted to a polygon

shapefile using EXP2SHP. This author’s

contributions are highlighted in bold.

The domain shapefile and the Iowa DNR

hypsography and hydrography layers were

imported into the ESRI ArcMAP program.

Using the GeoProcessing Wizard under Tools in

ArcMAP and selecting “Intersect two layers”,

the rivers “water” layer of the hydrography data

was intersected with the domain to produce a

rivers layer for the Upper Skunk river basin.

Similarly, the hypsography elevation contour

layer data was intersected with the domain to

produce a contour layer for the Upper Skunk.

7

The hydrography layer has river length

and location information but not elevation. The

elevation of the river is needed as input

prescribed heads. The next step then was to

intersect the river and contour data. This is not

a straight forward process since the river and

contour GIS data are polylines. GIS polylines

consist of multiple lines (arcs) strung together

during the digitization. They are not areal and

the ArcMAP intersection process is not

available for polylines. A different procedure

had to be devised in order to intersect the river

and contour polylines.

Three counties’ (Boone, Story, and

Hamilton) hypsography data contours (topo08,

topo40, and topo85) were merged using the

“Merge layers together” feature in ArcMAP.

The process was repeated for the three

hydrography layers (rivers08, rivers40, and

rivers85). The GeoProcessing Wizard under

Tools in ArcMAP “Dissolve features based on

an attribute” was selected to resolve all the

features into the same contour.

The river and contour data were exported

into a GEN file using ArcMAP and a plug-in

called ET GeoWizards 8.6. In order to

individually cross the river with the contour

data, the arcs had to be separated. A C program

was written to separate all of the river polylines

into separate arcs and intersect them. The logic

was not trivial but others had worked it out at

www.faqs.org. Chapter 6 Section 1 contains the

listing of the C program by this author.

The two files were merged to identify the

elevation of the river at the intersection with the

contour. This GEN format data file was then

converted back into a shapefile using GEN2SHP

and imported into ArgusONE as a data layer for

the prescribed heads. Figure 4.1 shows the

locations of the intersections.

Figure 4.1 Prescribed heads in the Upper Skunk

river basin In Iowa

The Iowa DNR hypsography bedrock

topology was intersected with the domain

shapefile using ArcMAP. The new shapefile

was imported into ArgusONE as a data layer for

the bottom elevation of the unoxidized late

Wisconsinan till. Figure 4.2 shows the bedrock

contours.

The Upper Skunk hypsography elevation

contour layer was imported into a data layer for

the top elevation of the oxidized late

Wisconsinan till. Figure 4.3 shows the image of

the Upper Skunk surface contours in Iowa.

The horizontal accuracy of the

hypsography data from Iowa DNR is 52 meters.

When the ArgusONE first rendered the data

there were points at which the river data was

below the surface. Each of the offending points

had to be adjusted to a meter above the surface.

8

Figure 4.2 Upper Skunk DNR bedrock contour

topology (m-msl) in Iowa

Figure 4.3 Upper Skunk DNR surface contour

topology image in Iowa

4.2 UPPER SKUNK GROUNDWATER

MODEL DATA

Two geologic layers make up both the

Walnut Creek watershed and the Upper Skunk

River basin. These top two layers are late

Wisconsinan till, oxidized and unoxidized. The

layer below the late Wisconsinan till is a Pre-

Illinoian till which is a confining layer because

of its low hydraulic conductivity (K < 1E-11

m/s). Research indicates that the top layer has a

higher hydraulic conductivity that ranges

between 1E-04 m/s and 1E-05 m/s. The

unoxidized layer hydraulic conductivity ranges

between 1E-08 m/s and 1E-09 m/s. The entire

basin is an unconfined system.

The top late Wisconsinan oxidized layer

varies in thickness from one to nine meters.

Most of the one to three meters is immediately

surrounding the rivers. Apart from the rivers

the late Wisconsinan oxidized layer varies from

four to nine meters. Five, six, and seven meter

top thicknesses were used in the Walnut Creek

inverse model. There was no difference in the

computed forward parameter for six and seven

meter oxidized layer thickness. A value of

seven meters was used in the top oxidized layer

for the Upper Skunk river basin.

Given the surface and bedrock

hypsography and the top thickness, the model

automatically computes the elevation of the

bottom of the oxidized layer by subtracting the

top thickness from the surface elevation. The

top and bottom layer thickness were computed

for each grid cell.

4.3 UPPER SKUNK GROUNDWATER

MODELING RESULTS

The upper section of the Upper Skunk

river basin drains southward. The lower section

drains into the center; that is, the lower western

section drains eastward and the lower eastern

section drains westward. Walnut Creek is in the

lower western section and groundwater flow is

from west to east.

9

Figure 4.4 Modflow Top Thickness = 7 m Top

K = 7.8E-9 Bottom K = 1.7E-4

Figure 4.5 LAD-EM Top Thickness = 7 m Top

K = 6.84E-04 Bottom K = 1E-10

Figure 4.4 shows the results of the

groundwater modeling using hydraulic

conductivity (K) values computes by the LSG

method. Figure 4.5 shows the results of the

groundwater modeling using hydraulic

conductivity (K) values computes by the LAD-

EM method.

4.4 SUMMARY OF THE UPPER SKUNK

GROUNDWATER MODELING

The timing and recharge rates from

Walnut Creek groundwater model were used as

input to the Upper Skunk groundwater model.

The groundwater model cells needed to be

filled with moisture in a steady state period in

order for the 12 linear variations in recharge to

produce a groundwater map of the basin. The

steady state time period of 563 days was a

rainfall impulse used to fill the cells of the

Upper Skunk with moisture. Since the basin is

30 times the size of the watershed it is not

expected that the well responses to rainfall

impulses would have been the same. However,

this is not an inverse model of the basin, rather a

forward model, and any significant length of

time, such as 365 days, could have been used to

initialize the Upper Skunk basin groundwater

model cells.

The USDA ARS National Soil Tilth

Laboratory is NAD83 datum. The Iowa

Department of Natural Resources is NAD27

datum. The horizontal accuracy is important to

groundwater modeling in order to place the

rivers at the exact location of the prescribed

heads. The grid discretization was 1965 meters

and the GIS accuracy is 52 meters at its worst

(15 meters at its best). The total effect is a 2.6%

accuracy (0.8% at its best) for the grid size. The

vertical accuracy is important in order to define

the elevation of the prescribed heads. The total

relief of the basin is 115 meters. Vertical errors

of 10 meters in the GIS data can cause serious

modeling errors. The ArgusONE interface to

MODFLOW will catch these errors and force

the modeler to edit the data by hand.

10

The heads produced by using hydraulic

conductivities computed from the LAD-EM

groundwater model are consistent with the

observed data. The system was modeled as an

unconfined system and LAD-EM hydraulic

conductivities produced heads that were within

two meters of heads specified in the literature.

The west to east drainage is consistent

with the Walnut Creek groundwater model.

5.0 CONCLUSION

5.1 ANALYSIS

The NSTL GIS data had been spot

checked with GPS data to an accuracy of one

meter. In addition, kriging of the contours

provided an additional level of accuracy for the

Walnut Creek GIS data. The IOWA NAD27

GIS data did not have the benefit of such close

scrutiny. Both horizontal positional accuracy

and the vertical accuracy of the hypsography

data are essential to large basin modeling. The

ArgusONE interface is a good tool for resolving

discrepancies.

Geographic Information System data made

it easy to define the geology for groundwater

models but accuracy is an issue for calculating

the elevations of the prescribed heads.

The use of the Walnut Creek rainfall data

to model the entire Upper Skunk river basin is a

stretch because of the differences in the size of

the drainage areas. An alternate recommended

procedure for basin analysis is to analyze all the

rain gages in the basin, analyze the rainfall for

similar linear variations, and apply these as areal

distributions throughout the basin. However,

both Walnut Creek watershed and the larger

encompassing Upper Skunk river basin are

within a low relief landscape not affected by

orographic effects. In addition, short term (i.e.

single storm events) effects are mitigated by the

use of the long term (i.e. 8 ½ years) record of

data in the groundwater models.

5.2 RESULTS

Modeling at the basin level required large

areas of hypsography and hydrography data in

order to calculate the elevation of the prescribed

heads. A program was written to separate the

entire river and contour polylines of the

Geographic Information System data, intersect

them, and identify the elevation of the river at

the point of intersection.

A groundwater model of the Upper Skunk

river basin in Iowa was created. The Upper

Skunk river basin groundwater model is a

reasonable estimate of basin recharge and

groundwater flow. The regional approach to

groundwater modeling produced a head flow

map oriented in the same direction as Walnut

Creek. The heads produced by the basin

groundwater model using the LAD-EM model

hydraulic conductivities matched observed

heads in the upland Walnut Creek area. The

LAD-EM model hydraulic conductivity

parameters were consistent with the values

published by USGS (Buchmiller, 1995).

6.0 APPENDICES

6.1 C LISTING

/*

The prescribed head data for the rivers had to be identified. The Rivers

shapefile arc data were split into separate polylines. The Contours arc

data were also split into polylines. The two sets of data were then

intersected and the CONTOUR from the Contours shapefile was

attached to the position of the Rivers shapefile where they intersected.

This C program took more than ten minutes to run on a 2.4 GHz

windows 2000 computer with 512 DDR 2700 SDRAM. The source

code is shown below.

*/

#include <stdio.h>

#define MAX(a,b) ((a)<(b) ? (b) : (a))

#define MIN(a,b) ((a)<(b) ? (a) : (b))

/*

 * This code will read in all the river arcs into memory

 * which is 13764 different arcs. This is from the

 * River.txt file. Then the topographic arcs will be read

 * from the Topo.txt file. Each topo arc will be

 * compared to each of the river arcs to see if there

 * is an intersect point.

 */

int mygets(p,fpin)

char *p;

FILE *fpin;

{

 int ch;

 int chcnt;

 chcnt=0;

 while((ch = fgetc(fpin)) != (int)'\n' && ch != EOF)

11

 {

 *p++ = (char)ch;

 chcnt++;

 }

 *p = 0;

 if(chcnt>1 && *(p-1) == '\r') *(p-1)=0;

 return(ch);

}

void main(argc, argv)

int argc;

char *argv[];

{

 int ch,chr; /* for character input */

 char *p,*q,cntbuf[512],labelbuf[512]; /* for character processing */

 int r,cnt,rivercnt[14000],atoi(); /* for river data */

 double X1[14000],Y1[14000],X2[14000],Y2[14000],atof(); /* for river data */

 double TopoX1,TopoY1,TopoX2,TopoY2; /* for Topographic data */

 double rr,rru,rrl,ss,ssu,ssl,Px,Py; /* for intersection caalculation */

 FILE *fp1, *fp2; /* two input files: River and Topographic data */

 if(argc == 2 &&

 (strcmp(argv[1],"-?") == 0 ||

 strcmp(argv[1],"-h") == 0 ||

 strcmp(argv[1],"-H") == 0)

)

 {

 printf("Usage : %s Rivers.txt Topo.txt\n", argv[0]);

 exit(0);

 }

 if(argc < 3)

 {

 printf("Usage : %s Rivers.txt Topo.txt\n", argv[0]);

 exit(0);

 }

 if((fp1 = fopen(argv[1], "r")) == NULL)

 {

 perror(argv[1]);

 exit(1);

 }

 if((fp2 = fopen(argv[2], "r+")) == NULL)

 {

 perror(argv[2]);

 fclose(fp1);

 exit(1);

 }

/* Rivers.txt

0

455657.543535679,4641529.915645910

455657.500015679,4641529.999997910

end

1

455657.500015679,4641529.999997910

455633.624943657,4641627.999998000

end

 */

 cnt=0;

 ch = mygets(labelbuf,fp1); /* get first label */

 while((ch = mygets(cntbuf,fp1)) != EOF)

 {

 rivercnt[cnt]=atoi(labelbuf);

 p=&cntbuf[0]; q=p;

 while(*q != ',') q++; *q++=0;

 X1[cnt]=atof(p); Y1[cnt]=atof(q);

 ch = mygets(cntbuf,fp1); /* get second point */

 p=&cntbuf[0]; q=p;

 while(*q != ',') q++; *q++=0;

 X2[cnt]=atof(p); Y2[cnt]=atof(q);

 ch = mygets(cntbuf,fp1); /* get end */

 ch = mygets(labelbuf,fp1); /* get the label */

 p=&labelbuf[0];

 if(strcmp(p,"end")==0 || strcmp(p,"END")==0)

 break;

 cnt++;

 }

 fclose(fp1);

 ch = mygets(labelbuf,fp2); /* get first label */

 while((ch = mygets(cntbuf,fp2)) != EOF)

 {

 p=&cntbuf[0]; q=p;

 while(*q != ',') q++; *q++=0;

 TopoX1=atof(p); TopoY1=atof(q);

 ch = mygets(cntbuf,fp2); /* get second point */

 p=&cntbuf[0]; q=p;

 while(*q != ',') q++; *q++=0;

 TopoX2=atof(p); TopoY2=atof(q);

 ch = mygets(cntbuf,fp2); /* get end */

 /* this is the UTM limits of the entire basin

 * 4706300

 * 423100 462500

 * 4641670

 */

 /* leftX = MIN(TopoX1,TopoX2); rightX=MAX(TopoX1,TopoX2); */

 /* lowerY = MIN(TopoY1,TopoY2); upperY=MAX(TopoY1,TopoY2); */

 for(r=0; r<cnt; r++)

 { /*

 if(X1[r] < leftX && X2[r] < leftX) continue;

 if(X1[r] > rightX && X2[r] > rightX) continue;

 if(Y1[r] > upperY && Y2[r] > upperY) continue;

 if(Y1[r] < lowerY && Y2[r] < lowerY) continue;

 */

 rru = ((TopoY1-Y1[r])*(X2[r]-X1[r]))-((TopoX1-X1[r])*(Y2[r]-Y1[r]));

 rrl = ((TopoX2-TopoX1)*(Y2[r]-Y1[r]))-((TopoY2-TopoY1)*(X2[r]-X1[r]));

 if(rrl != 0)

 {

 rr = rru/rrl; /* egn1 */

 ssu = ((TopoY1-Y1[r])*(TopoX2-TopoX1))-((TopoX1-X1[r])*(TopoY2-TopoY1));

 ssl = ((TopoX2-TopoX1)*(Y2[r]-Y1[r]))-((TopoY2-TopoY1)*(X2[r]-X1[r]));

 if(ssl != 0)

 {

 ss = ssu/ssl; /* eqn2 */

 if(rr >= 0 && rr <= 1 && ss >= 0 && ss <= 1)

 {

 Px=TopoX1+rr*(TopoX2-TopoX1);

 Py=TopoY1+rr*(TopoY2-TopoY1);

 fprintf(stdout,"%d\t%.10f\t%.10f\t%s\n",

 rivercnt[r],Px,Py,labelbuf);

 }

 }

 }

/* taken from http://www.faqs.org/faqs/graphics/algorithms-faq/

 Let A,B,C,D be 2-space position vectors. Then the directed line

 segments AB & CD are given by:

 AB=A+r(B-A), r in [0,1]

 CD=C+s(D-C), s in [0,1]

 If AB & CD intersect, then

 A+r(B-A)=C+s(D-C), or

 Ax+r(Bx-Ax)=Cx+s(Dx-Cx)

 Ay+r(By-Ay)=Cy+s(Dy-Cy) for some r,s in [0,1]

 Solving the above for r and s yields

12

 (Ay-Cy)(Dx-Cx)-(Ax-Cx)(Dy-Cy)

 r = ----------------------------- (eqn 1)

 (Bx-Ax)(Dy-Cy)-(By-Ay)(Dx-Cx)

 (Ay-Cy)(Bx-Ax)-(Ax-Cx)(By-Ay)

 s = ----------------------------- (eqn 2)

 (Bx-Ax)(Dy-Cy)-(By-Ay)(Dx-Cx)

 Let P be the position vector of the intersection point, then

 P=A+r(B-A) or

 Px=Ax+r(Bx-Ax)

 Py=Ay+r(By-Ay)

 By examining the values of r & s, you can also determine some

 other limiting conditions:

 If 0<=r<=1 & 0<=s<=1, intersection exists

 r<0 or r>1 or s<0 or s>1 line segments do not intersect

 If the denominator in eqn 1 is zero, AB & CD are parallel

 If the numerator in eqn 1 is also zero, AB & CD are collinear.

 If they are collinear, then the segments may be projected to the x-

 or y-axis, and overlap of the projected intervals checked.

 If the intersection point of the 2 lines are needed (lines in this

 context mean infinite lines) regardless whether the two line

 segments intersect, then

 If r>1, P is located on extension of AB

 If r<0, P is located on extension of BA

 If s>1, P is located on extension of CD

 If s<0, P is located on extension of DC

 Also note that the denominators of eqn 1 & 2 are identical.

 References:

 [O'Rourke (C)] pp. 249-51

 [Gems III] pp. 199-202 "Faster Line Segment Intersection,"

 Computational Geometry in C (2nd Ed.)

 Joseph O'Rourke, Cambridge University Press 1998,

 ISBN 0-521-64010-5 Pbk, ISBN 0-521-64976-5 Hbk

 Additional information and code at http://cs.smith.edu/~orourke/ .

 */

 }

 ch = mygets(labelbuf,fp2); /* get the label */

 p=&labelbuf[0];

 if(strcmp(p,"end")==0 || strcmp(p,"END")==0)

 break;

 }

 fclose(fp2);

}

6.2 EXP2SHP LISTING

 1: /* Contributions by this author are shown in BOLD

 2: * $Id: Exp2Shp.c,v 1.8 2000/06/12 13:23:35 jhudd Exp $
 3: *
 4: * Copyright (C) 1999 by Jan-Oliver Wagner <jan@intevation.de>

 5: * Revised by JHuddleston to read ArgusONE Export files , e.g.
 6: * ## Name:
 7: * ## Icon:0
 8: * # Points Count Value
 9: * 6 251.
 10: * # X pos Y pos
 11: * 451948.814592741 4641468.11396978
 12: * 451634.812160449 4641683.50008198
 13: * 451361.607936195 4641820.47646611
 14: * 451357.23750419 4641741.82097803
 15: * 451751.296256557 4641455.23307377
 16: * 451948.814592741 4641468.11396978

 17: *

 18: * This program is free software; you can redistribute it and/or

 19: * modify it under the terms of the GNU General Public License

 20: * as published by the Free Software Foundation; either version 2

 21: * of the License, or (at your option) any later version.

 22: *

 23: * This program is distributed in the hope that it will be useful,

 24: * but WITHOUT ANY WARRANTY; without even the implied

warranty of

 25: * MERCHANTABILITY or FITNESS FOR A PARTICULAR

PURPOSE. See the

 26: * GNU General Public License for more details.

 27: *

 28: * You should have received a copy of the GNU GPL

 29: * along with this program; if not, write to the Free Software

 30: * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

 31: *

 32: */

 33: #include <stdio.h>

 34: #include <stdlib.h>

 35: #include <string.h>

 36: #include <shapefil.h>

 37:

 38: #define VERSION "0.3.2"

 39:

 40: #ifdef DEBUG

 41: #define DEBUG_OUT(str) fprintf(stderr,"Exp2Shp debug: "
str)
 42: #define DEBUG_OUT1(str,v) fprintf(stderr,"Exp2Shp debug: "
str,v)
 43: #define DEBUG_OUT2(str,v,w) fprintf(stderr,"Exp2Shp
debug: " str,v,w)
 44: #define DEBUG_OUT3(str,v,w,x) fprintf(stderr,"Exp2Shp
debug: "str,v,w,x)
 45: #else

 46: #define DEBUG_OUT(str)

 47: #define DEBUG_OUT1(str,v)

 48: #define DEBUG_OUT2(str,v,w)

 49: #define DEBUG_OUT3(str,v,w,x)

 50: #endif

 51:

 52: /* Error codes for exit() routine: */

 53: #define ERR_USAGE 1

 54: #define ERR_TYPE 2

 55: #define ERR_FORMAT 3

 56: #define ERR_OBJECTTYPE 4

 57: #define ERR_ALLOC 5

 58:

 59: #define ERR_DBFCREATE 10

 60: #define ERR_DBFADDFIELD 11

 61: #define ERR_DBFOPEN 12

 62: #define ERR_DBFWRITEINTEGERATTRIBUTE 13

 63:

 64: #define ERR_SHPOPEN 20

 65:

 66: /* Object Type codes used in main(): */

 67: #define OBJECTTYPE_NONE 0

 68: #define OBJECTTYPE_POINT 1

 69: #define OBJECTTYPE_LINE 2

 70: #define OBJECTTYPE_POLYGON 3

 71: #define OBJECTTYPE_ARCS 4
 72:

 73: /* minimum number of coordinates allocated blockwise */

 74: #define COORDS_BLOCKSIZE 100

 75:

 76: /* maximum length for read strings,

 77: * if input lines with more characters appear,

 78: * errors are likely to occur */

 79: #define STR_BUFFER_SIZE 300

 80:

13

 81: #ifdef USE_STRICMP

 82: #define CASE_INSENSITIVE_STR_CMP stricmp

 83: #else

 84: #define CASE_INSENSITIVE_STR_CMP strcasecmp

 85: #endif

 86: double atof();
 87: int getline(FILE *fp, char s[])
 88: { int c, i;
 89:
 90: i=0;
 91: while ((c=fgetc(fp))!=EOF && c!='\n')
 92: s[i++]=c;
 93: if(i>0 && s[i-1] == '\r') s[i-1]='\0';
 94: s[i]='\0';
 95: return c;
 96: }
 97:

 98: void print_version(FILE *file)

 99: {

100: fprintf(file,"Exp2Shp version " VERSION "\n");
101: #ifdef DEBUG

102: fprintf(file,"compiled with option: DEBUG\n");

103: #endif

104: }

105:

106: static DBFHandle LaunchDbf (const char *fname) {

107: DBFHandle hDBF;

108: char dbffname[STR_BUFFER_SIZE];

109: char fieldname[STR_BUFFER_SIZE];

110:

111: sprintf(dbffname, "%s.dbf", fname);

112: sprintf(fieldname, "%s-id", fname);

113:

114: hDBF = DBFCreate(dbffname);

115: if(hDBF == NULL) {

116: fprintf(stderr, "DBFCreate(%s) failed.\n", fname);

117: exit(ERR_DBFCREATE);

118: }

119:

120: if (DBFAddField(hDBF, fieldname, FTInteger, 11, 0) == -1) {

121: fprintf(stderr,"DBFAddField(hDBF,%s,FTInteger,11,0)failed.\n",

122: fieldname); exit(ERR_DBFADDFIELD);

123: }

124:

125: DBFClose(hDBF);

126:

127: hDBF = DBFOpen(dbffname, "r+b");

128: if(hDBF == NULL) {

129: fprintf(stderr, "DBFOpen(%s,\"r+b\") failed.\n", dbffname);

130: exit(ERR_DBFOPEN);

131: }

132:

133: return hDBF;

134: }

135:

136: static SHPHandle LaunchShp(const char *fname,

137: int ObjectType) {

138: SHPHandle hSHP;

139: SHPObject *psShape;

140: char shpfname[STR_BUFFER_SIZE];

141:

142: sprintf(shpfname, "%s.shp", fname);

143:

144: switch (ObjectType) {

145: case OBJECTTYPE_POINT:

146: hSHP = SHPCreate(shpfname, SHPT_POINT);

147: break;

148: case OBJECTTYPE_ARCS:
149: hSHP = SHPCreate(shpfname, SHPT_ARC);
150: break;

151: case OBJECTTYPE_LINE:

152: hSHP = SHPCreate(shpfname, SHPT_ARC);

153: break;

154: case OBJECTTYPE_POLYGON:

155: hSHP = SHPCreate(shpfname, SHPT_POLYGON);

156: break;

157: default:

158: fprintf(stderr, "internal error: "

159: "unknown ObjectType=%d\n", ObjectType);

160: exit(ERR_OBJECTTYPE);

161: }

162:

163: if(hSHP == NULL) {

164: fprintf(stderr, "SHPOpen(%s, shape_type) failed.\n", shpfname);

165: exit(ERR_SHPOPEN);

166: }

167:

168: return hSHP;

169: }

170:

171: static void WriteDbf (DBFHandle hDBF,

172: int rec,

173: int id) {

174: if (! DBFWriteIntegerAttribute(hDBF, rec, 0, id)) {

175: fprintf(stderr, "DBFWriteIntegerAttribute(hDBFs,%d,1,%d)

176: failed.\n", rec, id);

exit(ERR_DBFWRITEINTEGERATTRIBUTE);

177: }

178: }

179:

180: static void WritePoint(SHPHandle hSHP,

181: int rec,

182: double x,

183: double y) {

184: SHPObject *psShape;

185:

186: psShape = SHPCreateObject(SHPT_POINT, rec, 0, NULL,

NULL,

187: 1, &x, &y, NULL, NULL);

188: SHPWriteObject(hSHP, -1, psShape);

189: SHPDestroyObject(psShape);

190: }

191:

192: static void WriteLine(SHPHandle hSHP,

193: int rec,

194: int coords,

195: double * x,

196: double * y) {

197: SHPObject *psShape;

198:

199: psShape = SHPCreateObject(SHPT_ARC, rec, 0, NULL, NULL,

200: coords, x, y, NULL, NULL);

201: SHPWriteObject(hSHP, -1, psShape);

202: SHPDestroyObject(psShape);

203: }

204:

205: static void WritePolygon(SHPHandle hSHP,

206: int rec,

207: int coords,

208: double * x,

209: double * y,

210: int nparts,

211: int * partstarts) {

212: SHPObject *psShape;

213:

214: DEBUG_OUT1("WritePolygon: rec = %d\n", rec);

215: DEBUG_OUT1("WritePolygon: nparts = %d\n", nparts);

216: DEBUG_OUT1("WritePolygon: coords = %d\n", coords);

217:

14

218: psShape = SHPCreateObject(SHPT_POLYGON, rec, nparts,

partstarts,

219: NULL,coords, x, y, NULL, NULL);

220: SHPWriteObject(hSHP, -1, psShape);

221: SHPDestroyObject(psShape);

222: }

223:

224: /* read from fp and generate point shapefile to hDBF/hSHP */

225: static void GeneratePoints (FILE *fp,

226: DBFHandle hDBF,

227: SHPHandle hSHP) {

228: char linebuf[STR_BUFFER_SIZE];/*buffer for reading from

file*/

229: int id; /* ID of point */

230: double x, y; /* coordinates of point */

231: char * str; /* tmp variable needed for assertions */

232: char * dstr; /* tmp variable needed to find out substrings */

233: int rec = 0; /* Counter for records */

234: char *p,*q;
235: int chr;
236: /*
237: ## Name:
238: ## Icon:0
239: # Points Count Value
240: 2 310.
241: # X pos Y pos
242: 438048.75 4673090
243: */
244: while (chr = getline(fp, linebuf) != EOF) {
245: if (linebuf[0] == '#' || linebuf[0] == '\0') continue;
246: q=&linebuf[0]; while (*q != '\t') q++; *q++=0;
247: p=q; while(*q != 0) q++; if(*(q-1) == '.') *(q-1)=0;
248: id = atoi(p);
249: chr = getline(fp, linebuf); if(chr == EOF) break;
250:
251: /* get the data */
252: while (chr = getline(fp, linebuf) != EOF) {
253: if (linebuf[0] == '#' || linebuf[0] == '\0') break;
254: q=p=&linebuf[0]; while (*q != '\t') q++; *q++=0;
255: x = atof(p); y=atof(q);
256: DEBUG_OUT3("id=%d, x=%f, y=%f\n", id, x, y);
257: WriteDbf(hDBF, rec, id);
258: WritePoint(hSHP, rec, x, y);
259: rec ++;
260: }
261: if(chr == EOF) break;
262: }

263: }

264:

265: /* read from fp and generate line/arc shapefile to hDBF/hSHP */

266: static void GenerateLines (FILE *fp,

267: DBFHandle hDBF,

268: SHPHandle hSHP) {

269: char linebuf[STR_BUFFER_SIZE];/*buffer for reading from

file*/

270: int id; /* ID of point */

271: double * x = NULL,

272: * y = NULL; /* coordinates arrays */

273: int vector_size = 0; /* current size of the vectors x and y */

274: char * str; /* tmp variable needed for assertions */

275: char * dstr; /* tmp variable needed to find out substrings */

276: int rec = 0; /* Counter for records */

277: int coord = 0; /* Counter for coordinates */

278: char *p, *q;
279: int chr;
280:
281: /*
282: ## Name:
283: ## Icon:0
284: # Points Count Value

285: 2 310.
286: # X pos Y pos
287: 438048.75 4673090
288: */
289: while (chr = getline(fp, linebuf) != EOF) {
290: if (linebuf[0] == '#' || linebuf[0] == '\0') continue;
291: q=&linebuf[0]; while (*q != '\t') q++; *q++=0;
292: p=q; while(*q != 0) q++; if(*(q-1) == '.') *(q-1)=0;
293: id = atoi(p);
294: DEBUG_OUT1("id=%d\n", id);

295: chr = getline(fp, linebuf); if(chr == EOF) break;
296:

297: coord = 0;

298:

299: /* loop coordinates of line 'id' */

300: while (chr = getline(fp, linebuf) != EOF) {
301: if (linebuf[0] == '#' || linebuf[0] == '\0') break;
302: /* allocate coordinate vectors if to small */
303: if (vector_size <= coord) {

304: vector_size += COORDS_BLOCKSIZE;

305: x = realloc(x, vector_size * sizeof(double));

306: y = realloc(y, vector_size * sizeof(double));

307: if (x == NULL || y == NULL) {

308: fprintf(stderr, "memory allocation failed\n");

309: exit(ERR_ALLOC);

310: }

311: }

312: q=p=&linebuf[0]; while (*q != '\t') q++; *q++=0;
313: x[coord] = atof(p); y[coord]=atof(q);
314: DEBUG_OUT2("x=%f, y=%f\n", x[coord], y[coord]);
315: coord ++;

316: }

317: WriteDbf(hDBF, rec, id);

318: WriteLine(hSHP, rec, coord, x, y);

319: rec ++;

320: if(chr == EOF) break;
321: }
322: free(x);
323: free(y);
324: }
325:
326: /* read from fp and generate line/arc shapefile to hDBF/hSHP
*/
327: static void GenerateArcs (FILE *fp,
328: DBFHandle hDBF,
329: SHPHandle hSHP) {
330: char linebuf[STR_BUFFER_SIZE];/*buffer for reading from
file*/
331: int id; /* ID of point */
332: double * x = NULL,
333: * y = NULL; /* coordinates arrays */
334: int vector_size = 0; /* current size of the vectors x and y */
335: char * str; /* tmp variable needed for assertions */
336: char * dstr; /* tmp variable needed to find out substrings */
337: int rec = 0; /* Counter for records */
338: int coord = 0; /* Counter for coordinates */
339: char *p, *q;
340: int chr;
341:
342: if (vector_size <= coord) {
343: vector_size += COORDS_BLOCKSIZE;
344: x = realloc(x, vector_size * sizeof(double));
345: y = realloc(y, vector_size * sizeof(double));
346: if (x == NULL || y == NULL) {
347: fprintf(stderr, "memory allocation failed\n");
348: exit(ERR_ALLOC);
349: }
350: }

351: /*
352: ## Name:

15

353: ## Icon:0
354: # Points Count Value
355: 2 310.
356: # X pos Y pos
357: 438048.75 4673090
358: */
359: while (chr = getline(fp, linebuf) != EOF) {
360: if (linebuf[0] == '#' || linebuf[0] == '\0') continue;
361: q=&linebuf[0]; while (*q != '\t') q++; *q++=0;
362: p=q; while(*q != 0) q++; if(*(q-1) == '.') *(q-1)=0;
363: id = atoi(p);
364: DEBUG_OUT1("id=%d\n", id);
365: chr = getline(fp, linebuf); if(chr == EOF) break;
366:
367: chr = getline(fp, linebuf); if(chr == EOF) break;
368: if (linebuf[0] == '#' || linebuf[0] == '\0') break;
369: q=p=&linebuf[0]; while (*q != '\t') q++; *q++=0;
370: x[0] = atof(p); y[0]=atof(q);
371: DEBUG_OUT2("x=%f, y=%f\n", x[0], y[0]);
372: coord=2;
373: while (chr = getline(fp, linebuf) != EOF) {
374: if (linebuf[0] == '#' || linebuf[0] == '\0') break;
375: q=p=&linebuf[0]; while (*q != '\t') q++; *q++=0;
376: x[1] = atof(p); y[1]=atof(q);
377: DEBUG_OUT2("x=%f, y=%f\n", x[1], y[1]);
378: WriteDbf(hDBF, rec, id);
379: WriteLine(hSHP, rec, coord, x, y);
380: x[0]=x[1]; y[0]=y[1];
381: rec ++;
382: }
383: if(chr == EOF) break;
384: }
385: free(x);

386: free(y);

387: }

388:

389: /* read from fp and generate polgon shapefile to hDBF/hSHP */

390: static void GeneratePolygons (FILE *fp,

391: DBFHandle hDBF,

392: SHPHandle hSHP) {

393: char linebuf[STR_BUFFER_SIZE];/*buffer for reading from

file*/

394: int id = -1; /* ID of polygon */
395: double * x = NULL,

396: * y = NULL; /* coordinates arrays */

397: int vector_size = 0; /* current size of the vectors x and y */

398: int nparts = 0; /* number of parts */

399: int * partstarts = NULL; /* new parts start in x[],y[] */

400: char * str; /* tmp variable needed for assertions */
401: char * dstr; /* tmp variable needed to find out substrings */
402: int rec = 0; /* Counter for records */

403: int coord = 0; /* Counter for coordinates */

404: char *p, *q;

405: int chr;

406:

407: /*
408: ## Name:
409: ## Icon:0
410: # Points Count Value
411: 2 310.
412: # X pos Y pos
413: 438048.75 4673090
414: */
415: while (chr = getline(fp, linebuf) != EOF) {
416: if (linebuf[0] == '#' || linebuf[0] == '\0') continue;
417: q=&linebuf[0]; while (*q != '\t') q++; *q++=0;
418: p=q; while(*q != 0) q++; if(*(q-1) == '.') *(q-1)=0;
419: id = atoi(p);
420: DEBUG_OUT1("id=%d\n", id);
421: coord = 0;

422: nparts = 0;
423: chr = getline(fp, linebuf); if(chr == EOF) break;
424:
425: partstarts = realloc(partstarts, sizeof(int) * (nparts+1));
426: if (partstarts == NULL) {
427: fprintf(stderr, "memory allocation failed\n");
428: exit(ERR_ALLOC);
429: }

430:

431: while (chr = getline(fp, linebuf) != EOF) {
432: if (linebuf[0] == '#' || linebuf[0] == '\0') break;
433: /* allocate coordinate vectors if to small */
434: if (vector_size <= coord) {

435: vector_size += COORDS_BLOCKSIZE;

436: x = realloc(x, vector_size * sizeof(double));

437: y = realloc(y, vector_size * sizeof(double));

438: if (x == NULL || y == NULL) {

439: fprintf(stderr, "memory allocation failed\n");

440: exit(ERR_ALLOC);

441: }

442: }

443: q=p=&linebuf[0]; while (*q != '\t') q++; *q++=0;
444: x[coord] = atof(p); y[coord]=atof(q);
445: DEBUG_OUT2("x=%f, y=%f\n", x[coord], y[coord]);
446: coord ++;

447: }

448: partstarts[nparts] = coord;
449: DEBUG_OUT1("newpart at %d\n", coord);
450: WriteDbf(hDBF, rec, id);

451: if (partstarts) partstarts[0] = 0;

452: WritePolygon(hSHP,rec,coord,x,y,(nparts>0 ? nparts+1 : 0),

453: partstarts); free(partstarts); partstarts = NULL;
454: rec ++;
455: if(chr == EOF) break;
456: }

457: free(partstarts);

458: free(x);

459: free(y);

460: }

461:

462: int main(int argc,

463: char ** argv) {

464: DBFHandle hDBF; /* handle for dBase file */

465: SHPHandle hSHP; /* handle for shape files .shx and .shp */

466: int ObjectType = OBJECTTYPE_NONE;

467:

468: if (argc != 3) {

469: print_version(stderr);

470: fprintf(stderr, "usage: %s outfile type < infile\n", argv[0]);

471: fprintf(stderr, "\treads stdin and creates outfile.shp, "

472: "outfile.shx and outfile.dbf\n"

473: "\ttype must be one of these: points arcs lines polygons\n"
474: "\tinfile must be in ArgusONE 'Exp' export format\n");
475: fprintf(stderr, "points are single x,y coordinates,\n");
476: fprintf(stderr, "arcs are split into separate polylines,\n");
477: fprintf(stderr, "lines are groups of polylines,\n");
478: fprintf(stderr, "polygons cover an entire area.\n");
479: exit(ERR_USAGE);

480: }

481:

482: /* determine Object Type: */

483: if (strcmp(argv[2], "points") == 0) ObjectType =

OBJECTTYPE_POINT;

484: if (strcmp(argv[2], "arcs") == 0) ObjectType =
OBJECTTYPE_ARCS;
485: if (strcmp(argv[2], "lines") == 0) ObjectType =

OBJECTTYPE_LINE;

486: if (strcmp(argv[2], "polygons") == 0) ObjectType =

487: OBJECTTYPE_POLYGON; if (ObjectType ==

OBJECTTYPE_NONE) {

16

488: fprintf(stderr, "type '%s' unknown, use one of these: "

489: "points arcs lines polygons.\n", argv[2]);
490: fprintf(stderr, "where: points are single x,y coordinates,\n");
491: fprintf(stderr, "arcs are split into separate polylines,\n");
492: fprintf(stderr, "lines are groups of polylines,\n");
493: fprintf(stderr, "polygons cover an entire area.\n");
494: exit(ERR_TYPE);

495: }

496:

497: DEBUG_OUT1("outfile=%s\n", argv[1]);

498: DEBUG_OUT1("type=%s\n", argv[2]);

499:

500: /* Open and prepare output files */

501: hDBF = LaunchDbf(argv[1]);

502: hSHP = LaunchShp(argv[1], ObjectType);

503:

504: /* Call generate function */

505: switch (ObjectType) {

506: case OBJECTTYPE_POINT:

507: GeneratePoints(stdin, hDBF, hSHP);

508: break;

509: case OBJECTTYPE_ARCS:
510: GenerateArcs(stdin, hDBF, hSHP);
511: break;
512: case OBJECTTYPE_LINE:

513: GenerateLines(stdin, hDBF, hSHP);

514: break;

515: case OBJECTTYPE_POLYGON:

516: GeneratePolygons(stdin, hDBF, hSHP);

517: break;

518: default:

519: fprintf(stderr, "internal error: "

520: "unknown ObjectType=%d\n", ObjectType);

521: exit(ERR_OBJECTTYPE);

522: }

523:

524: /* Finish output files */

525: DBFClose(hDBF);

526: SHPClose(hSHP);

527:

528: /* success */

529: exit(0);

530: }

17

7.0 REFERENCES

1. Andrews, W.F. and R.O. Dideriksen, US Department of Agriculture Soil Conservation Service, Soil Survey

of Boone County, Iowa. 1981.

2. Barrodale, I. and F.D.K. Roberts. Algorithm 552: Solution of the Constrained L1 Linear Approximation

Problem, ACM Transactions on Mathematical Software, 6, 1980. pp 231-235

3. Barrodale, I. and F.D.K. Roberts, An Efficient Algorithm for Discrete L2 Linear Approximation with Linear

Constraints. SIAM J. Numer. Anal., v. 15, no. 3, 1978. pp. 603-611

4. Barrodale, I. and F.D.K. Roberts. An improved algorithm for discrete L1 linear approximation. SIAM J.

Numer. Anal. 10(5), 1973. pp 839-848

5. Buchmiller, R.C., USGS 95-4109 I19.42/4:95-4109/DOC, “Ground-Water Levels and Flow at Selected Study

Sites in the Walnut Creek Management System Evaluation Area, Boone and Story Counties, Iowa, 1991-

1993", 1995.

6. Cade, B. S. and J.D. Richards, Permutation Tests for Least Absolute Deviation Regression, Biometrics, V. 52,

I.3, Sept, 1996. pp 886-902

7. Cooley, R.L. and R.L. Naff, Regression Modeling of Ground-Water Flow, U.S. Geological Survey

Techniques in Water Resources Investigations Chapter B4 Book 3, 1990. 232 p.

8. Dennis, J.E., D.M. Gay, and R.E.Welsch, An adaptive nonlinear least-squares algorithm, ACM Transactions

of Mathematical Software, V. 7, No. 3, 1981. pp. 348-368

9. Dewitt, T.A., US Department of Agriculture Soil Conservation Service, Soil Survey of Story County, Iowa.

1984.

10. Dougherty, E.L. and S.T. Smith, The use of linear programming to filter digitized map data, Geophysics,

V.31, 1966. pp. 253-259

11. Eppstein, M.J. and D.E. Dougherty, Simultaneous estimation of transmissivity values and zonation,

WRR, Vol. 32, No. 11, 1996. pp. 3321-3336

12. Foss, T, I. Myrtveit, and E. Stensrud, A Comparison of LAD and OLS Regression for Effort Prediction of

Software Projects, ESCOM Conference Ltd, August 21, 2001

13. Harbaugh, A.W., A computer program for calculating subregional water budgets using the results from the

U.S. Geological Survey modular three-dimensional finite-difference ground-water flow model: U.S.

Geological Survey Open-File Report 90-392, U.S. Geological Survey, 1990. 46 p.

14. Harbaugh, A.W., E.R. Banta, M.C. Hill, and M.G. McDonald, MODFLOW-2000, THE U.S. GEOLOGICAL

SURVEY MODULAR GROUND-WATER MODEL-USER GUIDE TO MODULARIZATION

CONCEPTS AND THE GROUND-WATER FLOW PROCESS, USGS, Reston, VA, 2000.

15. Hill, M.C., Preconditioned conjugate-gradient 2 (PCG2), a computer program for solving groundwater flow

equation, U.S. Geological Survey Open File Report 90-4048, 1990. 43 p.

16. Hill, M.C., A Computer Program (MODFLOWP) for Estimating Parameters of a Transient, Three-

Dimensional, Ground-Water Flow Model Using Nonlinear Regression, U.S. Geological Survey Open-File

Report 91-484, 1992. 358 p.

17. Hill, M.C., Methods and guidelines for effective model calibration. U.S. Geological Survey Water-Resources

investigations report 98-4005, 1998. 90 p.

18. Hill, M.C., E.R Banta, A.W. Harbaugh, and E.R. Anderman, Documentation of MODFLOW-2000, the U.S.

Geological Survey modular ground-water model, User's guide to the Observation, Sensitivity, and

Parameter-Estimation Process and three post-processing programs: U.S. Geological Survey Open-File

Report 00-184, 2000. 209 p.

19. Huber, P.J., Robust regression—Asymtotics, conjectures, and Monte Carlo: Annals of Statistics, v.1, 1973.

pp. 799–821

20. Huddleston, J.M., Evaluating Least Absolute Deviation Regression as an Inverse Model in Groundwater Flow

Calibration, PhD Dissertation Colorado State University, Fort Collins, CO, 2004.

21. Huddleston, J.M. and B.A. Shafer, Streamflow Analysis of the Colorado River, AGU Infiltration Conference,

Utah, 1987.

18

22. Keidser, A. and D. Rosbjerg, A comparison of four inverse approaches to groundwater flow and transport

parameter identification, Water Resources Research, 27(9), September 1991. pp. 2219-2232

23. McDonald, M.G., and A.W. Harbaugh, A modular three-dimensional finite-difference ground-water flow

model, Techniques of Water Resources Investigations 06-A1, United States Geological Survey, 1988.

24. McLaughlin, D. B. and L.R. Townley, A reassessment of the groundwater inverse problem, Water Resources

Research, 32(4), 1996. pp. 1131-1161

25. McLaughlin, D. B. and E.F. Wood, A distributed parameter approach for evaluating the accuracy of

groundwater model predictions, 1, Theory, Water Resources Research, 24(7), 1988a. pp. 1037-1047

26. McLaughlin, D. B. and E.F. Wood, A distributed parameter approach for evaluating the accuracy of

groundwater model predictions, 2, Applications to Groundwater Flow, Water Resources Research, 24(7),

1988b. pp. 1048-1060

27. Mielke, P.W. and K. J. Berry, Permutation Methods A Distance Function Approach, Springer-Verlag, New

York, 2001.

28. Phillips, R. F., Least absolute deviations estimation via the EM algorithm, Statistics and Computing, No. 12,

2002. pp. 281-285

29. Poeter, E. P. and M.C. Hill, Inverse Methods: A Necessary Next Step in Groundwater Modeling, Ground

Water, v. 35, no. 2, 1997. pp. 250-260

30. Poeter, E.P. and M.C. Hill, Unrealistic Parameter Estimates in Inverse Modeling: A Problem or Benefit for

Model Calibration, In Kovar, K., ed., 1996, proceedings of the IAHS International Conference on

Calibration and Reliability in Groundwater Modeling (ModelCARE’96), Golden, Co., 1996.

31. Poeter, E.P. and S.A. McKenna, Reducing Uncertainty Associated With Ground-Water Flow and Transport

Predictions, Ground Water, 33(6), 1995. pp. 899-904

32. Rao, C. R., Methodology based on the L1-norm, in statistical inference, Sankhya, A 50, 1988. pp 289-313

33. Sauer, P.A. and J.L. Hatfield, Walnut Creek Watershed Research Protocol Report, 94-1, 1994.

34. Simpkins, W.W. coordinator., Water, Water, Everywhere…, Iowa State University, and Geological Society of

Iowa, 57
th
 Annual Tri-state Geological Field Conference, Guidebook Series No. 58, 1993. 139 p.

35. Simpkins, W.W. and M.R. Burkart, Hydrogeology and Water Quality of the Walnut Creek Watershed, Iowa

Geological Survey Bureau Guidebook Series No. 20, 1996. 105 p.

36. Sheynin, O.B., R. J. Boscovich’s work on probability, Archive for History of Exact Sciences, 9: 1973. pp.

306-324

37. Sun, N.Z., Inverse problems in groundwater modeling, Volume 6 of Theory and Applications of Transport in

Porous Media, Kluwer Academic Publishers, 1994. 337p.

38. Sun, N.Z. and W.G. Yeh, A Stochastic Inverse Solution for Transient Groundwater Flow: Parameter

Identification and Reliability Analysis, Water Resources Research, 28(12), 1992. p. 3269

39. Sun, N.Z. and W.G. Yeh, Coupled Inverse Problems in Groundwater Modeling, 1. Sensitivity Analysis and

Parameter Identification, Water Resources., Vol. 26, No. 10, 1990. pp. 2507-2525

40. Tasker, G.D. and G.E. Granato, Statistical Approaches to Interpretation of Local, Regional, and National

Highway-Runoff and Urban-Stormwater Data, USGS Open-File Report 00-491, 2000.

41. Thompson, C.A., Groundwater Resources, Boone County, Open File Report 82-8 WRD, Iowa

Geological Survey, 1982.

42. Thompson, C.A., Groundwater Resources, Story County, Open File Report 82-85 WRD, Iowa

Geological Survey, 1982.

43. Todd, D. K., Ground-Water Hydrology, Wiley, New York, 1959.

19

About Your Paper

2005 International ESRI Conference Paper 1199

Status: Accepted

Groundwater Applications

Tuesday July 26, 2005 - 8:30 AM

Room 26-A

Contact Information

John M. Huddleston, PE, PhD

USDA NRCS

2150A Centre Avenue

Fort Collins, CO 80526 USA

970-295-5485

jhuddleston@itc.nrcs.usda.gov

