Advanced Authentication of ArcIMS Services

Michal Batko

Institute of Computer Science
Masaryk University, Brno, Czech Republic
xbatko@ics.muni.cz

Abstract. While publishing data using ArcIMS software, it is some-
times necessary to restrict the access to authorized personnel only. Two
standard authentication mechanisms are provided by default - a file based
authentication and a JDBC connection to a database. However, both
the methods use only plain-text passwords and require exactly defined
structures in either the file or the database. Moreover, only one file or
one database can be used for authentication. Qur proposal describes two
different methods that enhance ArcIMS with advanced authentication.
These methods provide the ability to authenticate an user with a pass-
word against any number of databases with different structures using
different hash functions on a per IMS service basis.

1 Introduction

Nowadays, the information is the most valuable business article. It is estimated
that more than 90% of information is produced in digital form and a part of
it is produced in GIS systems. In general, it is a difficult task to maintain all
the data gathered from different places all up-to-date. In such situation, it is
handy to use an Internet Mapping Service to provide and distribute geographic
always actual data to all its consumers. The ESRI provides an excellent piece
of software ArcIMS, which in fact allows a common user to easily publish his
spatial data through a webpage.

However, webpages are usually publicly available, so that anyone connected
to the Internet and knowing the proper address can actually access all the data
provided. Of course, this is not desirable always and sometimes, we need to
restrict the access to authorized personnel only. Therefore, we need to gather
the information about the user in some trusted way, so that we can be more
or less sure of his identity. Then we can check our list of people allowed to
access the service and either let the user in or refuse his request. The process
of identity verification is usually called authentication and the second check is
called authorization.

ArcIMS software provides some tools for authentication and authorization,
but it has some limitations. We go through it briefly in Section 2. Our objectives
for a more advanced authentication are provided in Section 3. The description
of our solution according to the proposed objectives is available in Section 4.

2 Built-in ArcIMS Authentication

Figure 1 depicts standard flow of a request through different components of
ArcIMS. Client’s request is received by a web server (1), and it is immediately
passed to a so called connector (2). In the usual installation, that we have focused
on, the connector is a Java servlet running on Tomcat servlet engine (the Tomcat
is also a web server itself, so it can provide both the steps). The connector
contacts ArcIMS server (3), which is responsible for generating the requested
data, e.g. an image with the map, and sends an answer back (4). The response
is then propagated to the client by the same path (5,6).

Web server Servlet ArclMS
engine application
and

1 2 ArcIMS serviet 3 spatial
connector servers
6 - 5 S) 4

Fig. 1. Flow of a map request

The standard authentication in ArcIMS is provided by the connector. It
uses so called HTTP authentication, which establishes the identity of an user
through his login name confirmed by a password. The HTTP authentication is
a well known standard and is implemented by almost every web browser. It has
two modes — a Basic and a Digest. When the basic mode is used, client (e.g. web
browser) passes the login and password provided by the user as is. The digest
authentication first hashes the password using a one-way function and passes
the login along with the scrambled password.

The servlet connector must verify the login/password pair get from the client
in order to confirm the user identity. In particular, two forms are provided — a
file based and a database based. The file authentication stores all the valid
user/password pairs in a XML file along with the names of services, that that
particular users can access. The second way, the database, provides similar func-
tionality, but the logins, passwords and service names are stored in a database.

The built-in authentication is usually sufficient, but it has some drawbacks
especially when a complex authentication mechanisms already exist in the insti-
tution and we want to use them transparently also for the ArcIMS services. The
file based authentication is applicable only to a limited number of users and it
is generally insecure. The database one is better, but the connector dictates the
structure of the tables containing authentication specific data, which is a real
problem in databases without view capabilities. Moreover, the passwords must
be stored in plain text in both cases.

3 Objectives

In our university, we have multiple information systems (for example students
agenda, employee intranet, etc.) with different authentication mechanisms (e.g.
kerberos, active directory, database with crypt-hashed passwords, etc.). There-
fore, we have set the following objectives for the ArcIMS authentication.

— User can be authenticated by any existing infrastructure service

— Modules for different services should be pluggable

— Several one-way functions for scrambling passwords should be supported
— User identity can be tried against multiple authentication services

— Once established identity should be cached for improved performance

— Request ArcXML document can be modified

4 Proposed Solution

In this section, we propose two strategies for satisfying the previous objectives.
The first approach relies on the web server capabilities of authentication, but
has some limitations. The second one provides fully transparent integration of
the advanced authentication, but it is restricted to the Tomcat servlet connector
only (which in fact is not so painful, since it is the most common installation
setting). We have implemented the second approach and we successfully use it
now.

4.1 Web Server Based Solution

Modern web servers, like IIS or Apache, allows transparent HT'TP authenti-
cation to restrict particular URL provided by a server. The web server itself
establishes the identity of an user, while he is accessing the restricted web pages
tree. For every restricted ArcIMS service, there must be a separate directory
with configured restricted area. Therefore, it is very difficult to maintain many
map services. Also, the last objective, the modification of requests, is simply not
possible.

4.2 Tomecat Solution

Our second proposed solution exploits the Tomcat features for authenticating,
authorizing and filtering requests. In particular, we can design a java class that
is plugged into Tomcat at the appropriate place so that related requests flow
through it. In our solution, the authentication is strictly detached from autho-
rization. See Figure 2 for clarification.

Once a request, that is in a restricted area, arrives, it is first passed to the
authentication module. This module establishes the user identity as an instance
of principal, which holds the required information about the user. Once a user
identity is known, its request is passed to the authorization module. It checks
the provided principal against the name of the service accessed and either allows
or refuses to process the request. Finally, the request may be passed to a XSL
transformation based on the user principal and the service name.

Servlet engine

2 authentication authorization filtering ArcIMS 3
serviet
g - connector i

Fig. 2. Plugged modules for authentication, authorization and filter

Authentication Modules

In general, the authentication modules must confirm the login/password pair
received from the client. As stated earlier, the client passes this information
using HTTP authentication in either Digest or Basic form. In the Basic case,
the password is first hashed using hashfunct, in the Digest case the client provide
the hash functions that were used (usually MD5-DIGEST) and the authenticator
must decide whether the hashed password is compatible with hashfunct or not.

In our implementation, the authentication module has a method authenti-
cate, that receives login and password and either returns user principal or refuses
the user as unauthorized. The implementation of hashfunct has two methods,
one for hashing the password and one for retrieving the set of Digest compatible
values.

In the following, we show an example of configuration for our JDBCAu-
thenticator module with UNIXCryptHashfunct plugin. JDBCAuthenticator is a
generic module that allows to specify any JDBC database connection using any
JDBC driver. In the example, a table users is accessed in a Microsoft SQL Server
via its native JDBC driver. Observe also the cacheSize and cacheTimeout pa-
rameters, which specify that this particular authenticator will cache maximally
one hundred login/password pairs each for one hour maximaly. Whenever a lo-
gin/password is checked, the cache (if it has size greater than zero) is consulted
and only if it is not successful, the database itself is queried and cache is updated.
The hashfunct plugin makes password digests by the UNIX crypt algorithm.

<authenticator id="mmsqlusers"

="imsauth.authenticators.JDBCAuthenticator"

className
driverName="com.microsoft.jdbc.sqlserver.SQLServerDriver"
connectionURL="jdbc:microsoft:sqlserver://somehost:1432;
User=someuser ; Password=somepassword"
credentialsSQL="SELECT passwd = :password FROM users
WHERE login = :login"

cacheSize="100"
cacheTimeout="3600">

<hashfunct className="imsauth.hashfuncts.UNIXCryptHashfunct"/>

</authenticator>

Authorization Module

To actually check whether a specified user has access to a specified service,
we need to define the relationship. It is done using authorization module. Its
implementation is similar to the authentication, it contains one method with
the user principal and the service name arguments. It returns whether the user
is allowed to access the service or not. In the example below, we use a comma
separated text file authorization module for linking the login names with service
names. The implementation of our CSVFileAuthorizer uses inner node text to
parse the file. We can use any method provided by principal or a service name
along with any text to define the format of a line.

<authorizer className="imsauth.authorizers.CSVFileAuthorizer">
" ;<principal methodName="getAuthenticatorName"/>",
" ;<principal methodName="getLoginName"/>",
" ;<servicename/>"

</authorizer>

Example of the text file parsed by the authorizer above follows. Observe that
first value is the authenticator name, which was introduced in id parameter. We
can also see, that wildcard * is available. It is implemented in such a way, that the
respective argument is not compared when the file is traversed. In the example,
user with login batko authenticated by the module identified as mmsqlusers is
allowed to access any ArcIMS services.

This is a CSV file for ArcIMS CSVFileAuthorizer
"mmsqlusers", "batko", "x"

"x" "someone", "some arcims service"

"x" "someoneelse", "some arcims service"

"x" "someone", "some other arcims service"

XSL Transformation Module

This module allows to modify the client’s ArcXML request using a XSL trans-
formation. It can be used for restricting the map extent for a specific users, to
restrict the allowed elements, etc. Provided the user principal and the name of
the service, this module returns an XSL transformation that modifies the re-
quest. If there is no transformation defined, the request is passed as is. We have
implemented a JDBC based filter module, which configuration is shown below.
Its parameters are similar to JDBC authenticator. The only difference is in bind-
ing the principal information and service name to the SQL command, which is
quite self-explanatory.

<xsltranform
className="imsauth.xsltranforms.JDBCXSLTransform"
driverName="sun. jdbc.odbc.JdbcOdbcDriver"
connectionURL="jdbc:odbc:somedb;UID=someuser;PWD=somepasswd"
xsltranSQL="SELECT transformation FROM xsltrans
WHERE login = :login AND serv_name = :srvname'>
<principal methodName="getLoginName" bindName="login"/>
<servicename bindName="srvname"/>
</xsltranform>

5 Conclusion

Our new authentication schema for ArcIMS servlet connector allows much greater
variability. We have successfully implemented all the tree modules for JDBC
drivers, we also have a text file modules for authenticator and authorizer, and
we have an experimental implementation of kerberos authentication.

In our university environment, we provide several ArcIMS services that are
restricted to different groups of people. For example, we provide maps from GIS
for keeping records about metropolitan academic computer network. Technicians
are authenticated against the GIS itself and they can see everything. Employees
of the university are authenticated against our personnel evidence system and
they cannot use identify functions. University students are denied to see labels
in some layers and they also have applied some attribute filters.

We use the advanced authentication for a half year now, and our experience
is very good, the schema proves to be stable and reasonably fast. The installation
of the advanced authentication is quite easy, it consists of copying a few Java
class files to appropriate directories of the Tomcat installation.

