
Title: A .NET ArcIMS Wrapper for the Rest of Us

Author: Justin White

Abstract: One of the challenges of effectively using GIS in any organization is

the fact that GIS is a highly specialized technology with its own set of

technologies and terminologies. As a result, in order to GIS enable an

application, one has to be proficient in ESRI technologies which are a

key barrier to widespread adoption of GIS within an organization. To

break down the barrier, we have to make GIS tools more readily

available to our application developers. To that end, we have designed

a .NET component which hides most of the implementation details

from the developer. .NET developers will simply drag a map

component on to their Web page, add the layers they need and wire

up code to user events such as a map selection. Because this

component relies on a standard ArcIMS Service, a developer new to

GIS can create a fully functional GIS application in minutes.

Paper Body:

At the City of Eugene in Eugene, Oregon, the Geographic Information System is

maintained by a division under the Public Works department. This division is

currently responsible for creating and maintaining the data that makes up the city’s

GIS, but does not provide programming resources. Programming resources for each

city department work as separate groups under the Information Services Division

(ISD). Of these seven groups of analysts, I am the only one, working for Public

Works who was assigned to GIS programming projects for no more than 70% of my

time.

Since the ISD work groups are dedicated to each department, cross departmental

collaboration on IT projects are rare. The city was having a tough time leveraging

the investment they had made in ArcIMS 9 infrastructure. Although customers, both

internally and externally, are asking for GIS enabled web applications, Public Works

is the only department with an analyst who has the training necessary to create GIS

enabled web applications.

Like many municipalities, the city was in a budget crunch. Money for GIS proficient

staff or GIS training for existing staff is hard to come by. But in order to meet

customer needs, something had to be done to quickly give analysts working for

departments other than Public Works the ability to create GIS enabled web

applications. To meet this goal, the city explored a range of options that would allow

development of web applications using ASP.NET, the city’s web platform of choice.

Training was an obvious choice, but as mentioned above, money for training was just

not available. To further complicate training options, GIS, like any specialized

technology, has its own set of terminology and technologies that cannot be learned

overnight.

It quickly became apparent that an Application Programming Interface (API) was

needed which would hide the complexities of a GIS system. At the same time, the

API should allow a developer to create sophisticated applications capable of

performing common GIS tasks such as zooming, panning, selecting and buffering. It

was decided that this API should be integrated with Visual Studio.NET (VS.NET),

preferably as a visual component allowing the user to drag and drop tools onto a web

form like other components. In addition, this API would need to integrate seamlessly

with the Plumtree portal the city was in the process of implementing.

Once the decision was made that a GIS API or component was most likely the

solution, the search for one began. The first two options investigated were the

ActiveX Connector and the new .NET Link that shipped with ArcIMS 9. Unfortunately,

the ActiveX connector lacked any type of visual interface, and did not integrate with

VS.NET. At first glance, the .NET Link appeared crippled and almost useless. The city

investigated purchasing a solution, but unfortunately vendors were few and far

between, and we would need the capability to customize the source code so that any

GIS applications could integrate with the portal.

We concluded that we needed to build our own component to satisfy our list of

requirements. In October of 2004, I began developing gMap (Generic Map), a .NET

ArcIMS Wrapper for the Rest of Us. Eight months of part-time development later,

gMap was successfully used in the city’s first publicly available GIS enabled web

application written by an analyst working for the Police department.

Based entirely on ESRI’s .NET Link, gMap is made up of one dll with ~6500 lines of

c# code, and ~1200 lines of JavaScript code. It is fully integrated with Visual

Studio.NET, is developer friendly and supports most major browsers. gMap is also

portal “aware” - it can recognize when it is running under the context of the Plumtree

portal and seamlessly gateway requests to and from the portal servers.

gMap has three visual objects inside of VS.NET, the map, toolbox and zoom bar. The

map contains logic to display information to the end user as well as the ability to

handle user interactions. The toolbox contains common tools found in a typical GIS

application including zoom in, zoom out, pan, center, identify, box select, and zoom

to full extent and clear selections. The zoom bar allows the user to zoom the map in

and out a fixed number of steps.

gMap’s API allows a developer to perform selections, queries and buffers against the

GIS data as well as control the appearance of the final image. In its default mode,

gMap works against a single generic or custom service containing all layers deemed

acceptable for public consumption. Adding layers to a map is handled through a “pick

list” generated on the fly from the ArcIMS service gMap is pointing to. This feature

allows developers not familiar with city data to quickly choose the layers they need in

their application.

To see gMap in action and find information on its’ release status please visit the City

of Eugene at http://www.eugene-or.gov

gMap’s map and toolbox objects inside of Visual Studio.NET

The above application running in Internet Explorer. The user has selected a section

of parks using the box selection tool. The results are displayed in the Datagrid on the

right.

The code behind the simple application demonstrated above.

Acknowledgements: I would like to thank ESRI for the .NET Link as without it

this project would not be possible. I would also like to

thank Peter Shum, Barry Bogart and Jan Wostmann for

their help throughout the development of this project.

Appendixes: None

End Notes: None

Author Information: Justin White

Sr. Systems Analyst

City of Eugene

100 W. 10TH Ave, Eugene OR 97401

P: (541)682-5857

F: (541)682-6899

justin.b.white@ci.eugene.or.us

