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Abstract 
A probabilistic time-activity model has been constructed in a GIS to enhance 
existing time-activity data or simulate complete time-activity patterns at the 
individual level, as a basis for exposure modelling. Time-activity surveys typically 
contain information on the type of location (e.g. home or work) and occupancy 
times but very rarely do they include detailed spatial data on journey routes. 
Combining probabilistic techniques with route modelling in GIS provides the 
opportunity to model individuals’ paths through the environment.  Journey and 
occupancy times are modelled on the basis of population distributions from 
existing time-activity surveys or national statistics. The resulting simulations can 
be used to assess potential exposures of specific subgroups of people to 
environmental hazards (e.g. air pollution, noise, traffic accidents) and to compare 
risks or other indicators under different management or policy scenarios. 
 
 
 
 
Background 

Although data on travel behaviour are sparse, the available statistics are 
remarkably consistent over much of the western world.  In the UK, for example, 
the UK2000 time use survey (National Statistics, 2003) reported an average of 
about 1.25 h per day travelling (although this rises slightly at weekends).  A 
detailed local time– activity survey in Northampton, UK showed average daily 
travelling times of 1.2 h for adults, 1.3 h for college students, and 1.0 h for 
schoolchildren (Briggs et al., 2003)  In Germany, average daily travelling times 
are estimated at 1.7 h for adults and 1.4 h for children (Seifert et al., 2000).  In 
the USA, the National Human Activity Pattern Survey (NHAPS) reported an 
average of 1.3 h per day spent ‘‘in a vehicle’’ (Klepeis et al., 2001).   
 
Most people thus spend a relatively small proportion of their time travelling. 
Travel environments, however, are often relatively polluted, with the result that 
journey-time exposures make up a disproportionately large amount of total 
personal exposures to ambient (and especially traffic-related) air pollution.   
Journeys are also associated with a range of other potential hazards, including 
traffic accidents and exposures to infectious diseases.  Consequently, they have 
potentially important implications for health and well-being.  By the same token, 
there are many potential uses for trip modelling for public health and 
epidemiology, such as: 

 the spread of infectious agents throughout a dynamic population, 
 the estimation of human exposures to urban air pollution under different 

emission, meteorological or behavioural scenarios, 
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 modelling effects of transport policies on behaviours, transport flows and 
exposures. 

 
Whilst there are increasing numbers of potential sources for time-activity data, 
the available data tend to be highly aggregated, and to lack spatial and temporal 
specificity.  Trip data, for example, often take the form of population counts 
showing overall numbers of population movements rather than individual trips or 
trip chains (e.g. UK census O-D data).  Traditionally, data on pedestrian and 
vehicle movement in the street network have been based on physical counts or 
time lapse photography.  Physical counts involve enumerating people or vehicles 
that pass a set of points or gates on a network over a set period of time, to give a 
measure of flow through the network.  Time lapse photography extends this 
approach by recording the movement of all pedestrians or vehicles at a junction 
in a defined area and drawing trail diagrams to plot their movement.  These 
methods, however, are necessarily limited in terms of their sample size or spatial 
coverage, and cannot be used to predict future patterns since they do not 
attempt to explain the processes that cause the movements.  Such processes 
can be considered to be an interaction between a large number of determinants 
and contingent factors, including the street network, the location and 
characteristics of particular attractions on that network (e.g. shops, workplaces), 
and population characteristics such as density, age, gender and socio-economic 
status.  One way of modeling trips is thus to use GIS techniques to link relevant 
data sets (e.g. on population and  local ‘attractors’), and use route finding 
algorithms together with data on travel patterns or preferences to simulate trip 
behaviours.   
 
 
Time-activity modeling in GIS 
The GIS-based time-activity model outlined here attempts to use this approach to 
simulate daily activity patterns.  The model has been developed as part of the 
EU-funded HEARTS project, and simulates time-activity patterns as a series of 
trips, with intervening periods of residence at defined locations.  Replication of 
the modelling over a large number of individuals enables population-level 
distributions of trip behaviour to be built up.   The resulting time activity data can 
then be intersected with information on environmental hazards, such as air 
pollution or accident risks, to derive estimates of risks to health and well-being.   
 
The model is probabilistic in concept, and can be run using either individual-level 
or aggregate (population) level data from existing time-activity surveys.  It is also 
designed to cope with varying levels of data completeness.  Data requirements 
are shown in Table 1.  A complete time-activity data set to run the model would 
include individual data on the start and end location of each trip (X/Y), the start 
and end times of each trip, trip mode, travel speed, route and activity type (i.e. 
activities undertaken at the destination).  When this information is complete, the 
model simply reproduces the time activity sequence.  If any of these parameters 
are missing from the time-activity database, however, they can be imputed 
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probabilistically on the basis of available statistical information.  For example, if 
the destination is not defined, it can be estimated by sampling from all the 
available destinations that match the specified activity type and travel time.  
Equally, if the route is not specified, it can be simulated as the shortest distance 
or travel-time between the start and end locations using PATH function in GIS.  If 
no individual level data are available, the model imputes the entire time activity 
sequence for a virtual individual by sampling the statistical data.  These statistical 
data comprise generalised distributions for the study population (Table 1).  Time-
activity modelling can thus be performed using a mixture of individual level and 
statistical (aggregated) data from time-activity surveys.  
 
Table 1. Data requirements for time activity modelling 
 
Information 
requirement 

Individual level Statistical/aggregate 

Location x,y co-ordinates of origin and 
destination 

Density distribution (e.g. of 
population, workplaces) or 
land cover map 

Activity type Classification of each location 
(e.g. home, school, work, 
shops) 

Transition matrix by time of 
day (population transfers 
between different activity 
types) 

Start time Departure from origin 
End time Arrival at destination 

Transition matrix (plus target 
times for specific activities – 
e.g. start/end of school day)  

Travel mode Mode of travel (e.g. car, walk, 
bicycle, bus) 

Modal distribution by travel 
time 

Route Digitised route Network data (e.g. roads, 
bus-routes, pedestrian paths)

Speed Actual travel speed (or time 
and distance) 

Average speeds by mode 
(and network link, if 
available) 

 
 
Model description 
The model has been programmed in ArcView GIS.  It is menu driven, with the 
selected input data defining the correct modules that must be called to model any 
unknown data, whilst utilising all known data.  The modules are outlined in Table 
2.  To facilitate integration of the various modules, a fixed format of input data is 
required.  This specifies all the required fields for trip-modelling, with data that 
must be generated by the model entered as empty fields.  On start-up, the input 
data files are automatically checked, any required matching data verified (e.g. 
network speeds and modes) and the relevant statistical data then selected.   
 
The input data also includes a unique person-ID, which identifies each individual 
being modelled.  This enables a distinction to be made between trip-chains - i.e. 

 3



a series of linked journeys that an individual has taken throughout the day – and 
a set of independent journeys undertaken by a number of different individuals. 
 
Table 2. Modules used in trip modeling.  
 
MODULE DESCRIPTION INPUT DATA 
HOME Computes home location by sampling 

population density (within a zone or across a 
study area) 

Population density 

TRANSIT Selects destination type for current hour by 
sampling a transition matrix 

Hourly transition matrix 

MODE Selects mode by finding travel mode along the 
specified route that best matches travel time 

Origin 
Destination 
Route (by mode) 
Travel time 

ROUTE1 Selects route and destination by finding route 
(by predefined mode) to available destination 
types that best matches the specified travel 
time 

Origin 
Destination type 
Mode 
Travel time 

ROUTE2 Computes mode, route and travel time 
between predefined origin and destination by 
sampling all available mode-route options, 
using a least-cost algorithm 

Origin 
Destination 

ROUTE3 Computes mode and route between 
predefined origin and destination by selecting 
the mode-route combination that best matches 
specified travel time 

Origin 
Destination 
Travel time 

ROUTE4 Selects route (for the predefined mode) from 
origin to destination on the basis of a least-
cost algorithm 

Origin 
Destination 
Mode 

DESTIN Defines a set of search radii for each mode, by 
sampling statistical data on trip length by 
destination type and mode, and then maps the 
distribution of available destinations of that 
type within these radii 

Mode 
Destination type 

TRIP Computes mode, route and destination on the 
basis of a least-cost algorithm by sampling all 
available combinations (from the predefined 
origin to all destinations of a predefined type 
within a specified set of search radii) 

Origin 
Destination type 
Map of available destinations 

TIME Computes start and end time by randomly 
selecting times within the available travel hour, 
based on the specified travel time 

Origin 
Destination 
Route 
Mode 
Travel time 

 
 
Model operation 
In order to calculate any route the minimum requirement is clearly an origin and 
destination.  If these are not specified in the input data, they must be derived at 
the outset of modelling, commencing with the origin.  In modelling the initial origin 
for any time-activity sequence, the location type is always assumed to be an 
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individual’s home.  Modelling also starts, by default, at midnight.  Where the 
place of residence is not specified in the input data, a population-weighted point 
or shapefile coverage is randomly sampled to define the home.  For journeys that 
constitute a trip chain, only the first origin is sampled in this way, with all 
subsequent origins being automatically defined as the destination from the 
preceding trip. 
 
In cases where the journey destination information is missing, a transition matrix 
is sampled to select a destination (activity) type.  Transition matrices can be 
derived from national data (e.g. census or household surveys), purpose-designed 
surveys, or indirectly from information on time-activity patterns (e.g. hours spent 
at school or work).  Transition matrices are constructed to show the cumulative 
percentage of people moving from any one source activity (origin) to any other 
target activity (destination), by hour of the day (Table 3): twenty-four matrices 
must, therefore, be provided for any single day.  Separate matrices may also be 
specified for specific population subgroups (e.g. children, commuters).  Using the 
relevant field for the current origin, sampling is carried out by randomly 
generating a number (between 0 and 100).  This value is then used to select the 
relevant cell, and thus destination type.  For example, for a trip starting at home, 
a random number of 37 would give a destination type ‘work’ (between 20% and 
50%) in Table 3.   
 
Table 3. Cumulative percentages of time-activity transitions for population 
(all ages) at time 08.00-09.00  
Time period 08.00-09.00 Origin (at 08.00) 

 Home Work School Shops Leisure 
Home 20 10 0 10 20 
Work 50 50 0 40 40 
School 90 85 100 70 60 
Shops 95 95 100 95 70 

Destination 
(by 09.00) 

Leisure 100 100 100 100 100 

N.B: table is read downwards, according to origin.  All the columns in the matrices must sum to 
100. 

 
The actual destination location must then be derived.  If this is not specified in the 
input data, it is imputed probabilistically, using data on the density distribution (or 
actual location) of relevant activity centres.  Thus, for the journey from home-
work, the location of ‘work’ must be specified.  A module ‘destin’ maps the 
distribution of available destinations for the specified type, by: 

a) setting a search radius for each available mode from the origin, by 
sampling distributions of trip distances by mode and trip type (example 
below) 

b) mapping the distribution of all available locations within this radius.  
Locations of destinations, by type, are specified a priori in a point 
coverage or shapefile.   
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Where not specified in the input data, travel mode, route and journey length 
(distance and time) are then modelled.  These are clearly interdependent, since 
not all routes are available for any specific mode and the journey length depends 
on the route and mode used.   Modal preferences, in turn, vary depending on the 
length (i.e. duration) of the journey. 
 
Where the travel time is known, the route and mode are selected by modelling 
the travel time to the destination by all available routes and modes, and selecting 
the one which most closely matches the specified travel time.  In the event of 
more than one eligible option, the route is selected randomly from the tied set.   
 
Where the travel time is not specified in advance, the mode of travel and route is 
selected probabilistically by randomly selecting from all the available route-mode 
combinations on the basis of travel time.  Statistical data on modal preferences 
by distance (e.g. based on national travel surveys) are used for this purpose.  
Table 4 presents an example: preferences (for n number of modes for each 
distance class) are presented as cumulative percentages.  To enable different 
destination-route-mode combinations to be compared, combinations are 
weighted as follows: 
 

Wijk = [(1-(Tijk / ΣTijk)) * (Pij / ΣPij)]  / Σ [(Tijk / ΣTijk) * (Pij / ΣPij)] 
 
Where : Wijk is the weight assigned to route i by mode j to destination k 

Tijk is the travel time taken to complete route i by mode j to destination k 
Pij is the preference for mode j, over the computed travel time for route i. 
Values of Pij are assigned on the basis of trip time e.g. using Table 3 

[Eq. 1] 
 
The resulting weighted preferences are then rescaled to 100, and a mode-route 
combination chosen by drawing a random number between 1 and 100. 
 
Table 4. Cumulative percentages of journeys by mode and time 
Time Car Bus Cycle Walking 
0-0.5 5 15 25 100 
0.5-1.0 10 30 40 100 
1.0-2.0 25 45 65 100 
2.0-3.0 45 65 80 100 
4.0-5.0 65 80 90 100 
6.0-10.0 80 95 100 100 
10.0-20.0 90 100 100 100 
>20.0 95 100 100 100 
N.B: table is read cross-ways, according to journey length.  The values of Wij should sum to 1.0. 
 
If the route forms part of a trip chain, the preferences are rescaled after each trip 
(by halving the percentages for all other modes and attributing the difference to 
the previously used mode) in order to increase the likelihood of travelling by the 
same mode. 
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The exact start time of any activity or trip within that hour is selected randomly.  
The one exception is when the previous journey exceeds an hour; in that event 
the modelled destination time is set as the earliest possible start time for the next 
trip.  
 
The speed along each route varies both spatially (i.e. from link to link) and over 
time (e.g. depending on traffic congestion).  The relevant speed for each link in 
the route shapefile is found from the input network coverage.  The relevant time 
period is defined by referencing the journey start time.   
 
In order to derive time-activity patterns for a specified (sub-)population, 
simulations are carried out for a large number (e.g. several hundred) of 
individuals and the results pooled to give a distribution.  Exposures during these 
activities can also be assessed, by intersecting the time-activity profiles for each 
individual with spatio-temporal data on relevant hazards (for example, hourly air 
pollution maps or traffic accident risks).  Aggregation of the resulting exposures 
can thus be used to derive distributions for the whole population or sub-group, 
and these can be linked to dose-response functions to estimate potential impacts 
on health.   
 
 
Conclusion 

The methodology described here enables time-activity patterns to be modelled 
on the basis of variable levels of data.  The model is probabilistic, and designed 
to extract the maximum amount of information possible from the available data 
by using the advanced functionality of GIS.  Applications are diverse.  They 
include studies of population dynamics, accessibility, environmental exposures 
and health risks, transport and land use planning.   Nevertheless, except where 
modelling is carried out on the basis of reliable individual-level population data, 
the results should not be regarded as models of actual behaviour or exposures.  
Instead, they represent scenarios, representing specific population groups and 
activity patterns.  One of the major applications of the model is thus to analyse 
potential impacts of different policies or interventions – such as changes in traffic 
management or air pollution control strategies - by comparing an indicative group 
of virtual individuals under different conditions.  At an individual level there can 
be no substitute for data collection; at a population level, however, this method 
provides a powerful tool both for research and policy. 
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