

Toward the Next Level of GIS for Emergency Management (EMMA)

Joe Bizzell
Senior Web Programmer, Center for GIS
Towson University

Copyright © 2005 Towson University Center For Geographic Information Sciences

Presentation Overview

- Emergency Management Needs
 - Data and tool interoperability needs
- Quick System Overview
 - Functionality
 - Integration
 - Architecture
- Enterprise System Strategies
 - Application Development Strategies
 - Real-time Data Strategies
 - Configuration Strategies
 - Expandability Strategies

Maryland's Model for Emergency Management Data Interoperability

High Level Look at EMMA Functionality

- Identify an incident location
 - Field to EOC communication
- Generate a location report
 - EOC to field communication
- Visualize an incident location
 - Integrate multiple data sets into one view
- Analyze an incident location
 - Analyze an impacted area
- Coordinate resources
 - Real-time data
 - Resource tracking

Baltimore County Police, Wilkers District

How does EMMA Relate to **Incident Management Software?**

- Acts as the spatial component of the decision making process
- **Common Operating Picture**
 - A picture is worth a thousand words...
- Turns data into information
 - Map visualization
 - Location analysis
 - Report generation

Enterprise Architecture Optimized for Emergency Management

- Server-side processing
- Real-time data strategies
- Simplified configuration
- Expandability

Databases Data

Data

High Level Architecture of the Enterprise System

- Application
 - Admin interface
 - Location Module
 - Viewers
 - Report View
 - Supporting Classes
 - Web Services
 - Configuration Files
- Map services (internal and external)
- Application database
- ArcSDE Databases and other GIS data
- Remote Interoperability Connector Kit (RICK)

EMMA Core Web Application (User Interaction)

- Map Viewer(s)
 - Navigation tools
 - Analysis tools
 - Display tools
 - (set refresh rate)
 - (add map services)
- Location Module
 - Create features through form into ArcSDE
- Admin Interface
 - Viewer resources
 - Update incident data
- Reporting Mechanism

Application Development Strategy (Java Web Application)

- Server-Side Processing
 - Lightweight
 - Code is compiled on a server and HTML is sent to browser, keeping the page lightweight on the client-side
 - Secure
 - Clients can't see code or connection information
 - "Easy" to customize (if you know what you're doing!)
- Many Java libraries are available for a multitude of useful functions.
- Possible to integrate many types of functions
 - Web services
 - Context Listeners and Section Filters
 - Direct integration of custom libraries
 - Ability to build custom security in several ways
 - Ability to securely contain configuration files

Real-time Data Strategy: ArcSDE as Database Engine

- Dynamic updates of data
 - Attribute level data updates
 - Spatial data updates
- Related data table options
- Indexing flexibility
- Robust security options
- Performance advantages (Tuning Required)
- Consistent with RDBMS management techniques
- Flexibility for backups

Real-time Data Strategy: Populating Database

- Dynamic creation of emergency management spatial data
 - Identify incident locations
 - Receive CAP alerts (via EDXL)
 - Specify emergency resources (i.e. shelters)
- Scheduled updates of diverse data via RICK (Remote Interoperability Connector Kit)
 - Complete layer harvesting
 - Scraping data from existing sources (HTML, Text, XML)

Real-time Data Strategy: On the Fly Access to External Data

- Current Map service integration
 - ArcIMS services
 - Image services
 - Open Geospatial Consortium, Inc.
 (OGC) Services
 - Web Map Services (WMS) standard
- Future Map service integration possibilities
 - ArcGIS services
 - ArcGIS SOAP image services
 - ArcIMS services
 - Feature services
 - OGC Services
 - Web Feature Services (WFS) standard

Configuration Strategy

- Property files
 - Streamlined installation / configuration
 - No need to modify code
- Application database manages:
 - Reports
 - Layer categories
 - Map service connection information
 - Admin System for database modification
- Style sheets
 - Flexible design

Expandability Strategy

- Built for multiple viewers
 - Standard Viewer(s)
 - Basic Viewers
 - Mobile Viewers
- Modular approach
 - Uses a flexible collection of core libraries
 - Utilizes XML Web Services (Service oriented architecture)
 - To perform regular functions
 - To allow access from other applications
- Incorporates layer metadata (FGDC)
 - Abstract view
 - Full document view
- Incorporates data layers that have a database relation to Incident Management software
 - Incident locations, shelter status, etc.
 - These layers can be administered via Web interface

Questions?

Joe Bizzell Senior Web Programmer, Center for GIS **Towson University** cbizzell@towson.edu

Matt Felton Associate Director, Center for GIS **Towson University** mfelton@towson.edu

http://cgis.towson.edu

