Toward the Next Level of GIS for Emergency Management (EMMA)

Joe Bizzell
Senior Web Programmer, Center for GIS
Towson University

Copyright © 2005 Towson University Center For Geographic Information Sciences
Presentation Overview

- Emergency Management Needs
 - Data and tool interoperability needs
- Quick System Overview
 - Functionality
 - Integration
 - Architecture
- Enterprise System Strategies
 - Application Development Strategies
 - Real-time Data Strategies
 - Configuration Strategies
 - Expandability Strategies
Maryland’s Model for Emergency Management Data Interoperability

Interoperability

Federal Applications (HSIN / DMIS)

Interoperability Backbone

Local
Regional/State
National

EMMA

Turning Knowledge Into Coordinated Action
Turning Information Into Knowledge
Turning Data Into Information

Tools

Data

Fire/EMS
Public Works
State Police
Environmental
Licensing
DHS
United States Geological Survey (USGS)
EPA

Law Enforcement
Health
Medical
Natural Resources
Planning
USGS

Transit
County GIS
Emergency Management
Transportation
Weather
EPA

Center for Geographic Information Sciences

Towson University
High Level Look at EMMA Functionality

- Identify an incident location
 - Field to EOC communication
- Generate a location report
 - EOC to field communication
- Visualize an incident location
 - Integrate multiple data sets into one view
- Analyze an incident location
 - Analyze an impacted area
- Coordinate resources
 - Real-time data
 - Resource tracking
How does EMMA Relate to Incident Management Software?

- Acts as the spatial component of the decision making process
- Common Operating Picture
 - A picture is worth a thousand words…
- Turns data into information
 - Map visualization
 - Location analysis
 - Report generation
Enterprise Architecture Optimized for Emergency Management

- Server-side processing
- Real-time data strategies
- Simplified configuration
- Expandability

EMMA GIS Database

Remote Interoperability Connector Kit (RICK)

Shared Maps

Visualize Maps

Analyze Incident

Locate Incident

Generate Report

Integration with Incident Management Tools

Web Pages

Public / Private Databases

Real-Time Data

Remote Map Servers

Data

Information

Knowledge

Decisions

Center for Geographic Information Sciences
High Level Architecture of the Enterprise System

- **Application**
 - Admin interface
 - Location Module
 - Viewers
 - Report View
 - Supporting Classes
 - Web Services
 - Configuration Files
- **Map services (internal and external)**
- **Application database**
- **ArcSDE Databases and other GIS data**
- **Remote Interoperability Connector Kit (RICK)**

[Diagram of High Level Architecture of the Enterprise System]

Center for Geographic Information Sciences
EMMA Core Web Application
(User Interaction)

- Map Viewer(s)
 - Navigation tools
 - Analysis tools
 - Display tools
 - (set refresh rate)
 - (add map services)
- Location Module
 - Create features through form into ArcSDE
- Admin Interface
 - Viewer resources
 - Update incident data
- Reporting Mechanism
Application Development Strategy
(Java Web Application)

- **Server-Side Processing**
 - Lightweight
 - Code is compiled on a server and HTML is sent to browser, keeping the page lightweight on the client-side
 - Secure
 - Clients can’t see code or connection information
 - “Easy” to customize (if you know what you’re doing!)
- Many Java libraries are available for a multitude of useful functions.
- Possible to integrate many types of functions
 - Web services
 - Context Listeners and Section Filters
 - Direct integration of custom libraries
 - Ability to build custom security in several ways
 - Ability to securely contain configuration files
Real-time Data Strategy: ArcSDE as Database Engine

- Dynamic updates of data
 - Attribute level data updates
 - Spatial data updates
- Related data table options
- Indexing flexibility
- Robust security options
- Performance advantages (Tuning Required)
- Consistent with RDBMS management techniques
- Flexibility for backups

Center for Geographic Information Sciences
Real-time Data Strategy: Populating Database

- Dynamic creation of emergency management spatial data
 - Identify incident locations
 - Receive CAP alerts (via EDXL)
 - Specify emergency resources (i.e. shelters)
- Scheduled updates of diverse data via RICK (Remote Interoperability Connector Kit)
 - Complete layer harvesting
 - Scraping data from existing sources (HTML, Text, XML)
Real-time Data Strategy: On the Fly Access to External Data

- **Current Map service integration**
 - ArcIMS services
 - Image services
 - Open Geospatial Consortium, Inc. (OGC) Services
 - Web Map Services (WMS) standard

- **Future Map service integration possibilities**
 - ArcGIS services
 - ArcGIS SOAP image services
 - ArcIMS services
 - Feature services
 - OGC Services
 - Web Feature Services (WFS) standard
Configuration Strategy

• Property files
 – Streamlined installation / configuration
 – No need to modify code

• Application database manages:
 – Reports
 – Layer categories
 – Map service connection information
 – Admin System for database modification

• Style sheets
 – Flexible design
Expandability Strategy

- Built for multiple viewers
 - Standard Viewer(s)
 - Basic Viewers
 - Mobile Viewers
- Modular approach
 - Uses a flexible collection of core libraries
 - Utilizes XML Web Services (Service oriented architecture)
 - To perform regular functions
 - To allow access from other applications
- Incorporates layer metadata (FGDC)
 - Abstract view
 - Full document view
- Incorporates data layers that have a database relation to Incident Management software
 - Incident locations, shelter status, etc.
 - These layers can be administered via Web interface
Questions?

Joe Bizzell
Senior Web Programmer, Center for GIS
Towson University
cbizzell@towson.edu

Matt Felton
Associate Director, Center for GIS
Towson University
mfelton@towson.edu

http://cgis.towson.edu