T-BEST 2.1

Presented to: ESRI International User Conference July 27, 2005

Project Team

- Florida Department of Transportation,
 Public Transit Office
- Center for Urban Transportation Research (CUTR)
- > University of South Florida
- GeoDecisions, A Division of Gannett Fleming
 - Gannett Fleming, Inc.

Outline

- 1. Need for T-BEST
- 2. T-BEST Applications
- 3. T-BEST Model Concepts
- 4. T-BEST Analysis
- 5. T-BEST Software Overview
- 6. T-BEST Implementation
- 7. Conclusions
- 8. Future Enhancements
 - Demonstration

T-BEST

Need For T-BEST

- Systems Planning Software
 - Traditional 4 Step Planning Travel Models
 - Long term (20+years), Systems Level
 - Multimodal

T-BEST

Primarily Suited for Major Investment Studies

Need For T-BEST

- > Transit Operational Level Software
 - Trapeze, Hastus
 - Routing & Scheduling
 - Do Not Allow for Evaluation of Service Alternatives

T-BEST Applications

What is T-BEST?

T-BEST

- <u>Comprehensive</u> Transit Network Modeling, Management and Analysis Software designed for <u>short-term transit planning</u>
- Direct and Transfer Stop-Level Boardings
 Estimation

T-BEST Applications

- > Service Planning
 - Stop/Route Adjustments based on:
 - ✓ Seasonal Patterns
 - Land Use Changes
 - Road Construction
 - ✓ Service Changes
 - Short-Term Ridership Forecasting
 - Adjust Socio-Economic for expected growth
 - Fare Structure changes
 - New Routes, Stops
 - New Technologies (BRT, Rail, Trolley, etc)

T-BEST Applications

- Support for Transit Development Plans
- > Transit System Management
 - Network Editing/Coding
 - Integration with ArcGIS

T-BEST

Can serve as a baseline operational software

- > Transit systems planning considerations:
 - Accessibility
 - Availability
 - Quality of Service
 - Ridership
 - Temporal Characteristics
 - Transfers

T-BEST

- Route/Network Design
- Fare Policies and Structure
- Alternative Modal Options/Technologies/Route Types
- Disaggregate Stop-Level Analysis

- > Transit ridership strongly affected by:
 - Destination accessibility
 - Temporal availability
 - Network connectivity
 - Desire to have T-BEST sensitive to all three aspects of transit accessibility
 - Ability to test effects of alternative route and network design configurations on transit boardings

Neighboring Stops

- Riders may choose alternative stops, routes, destinations for pursuing activities
- Neighboring stops effectively capture effects of competing routes/stops
- Neighboring stops are those with overlapping buffers with subject stop
 - N1: Same Route, Same Direction
 - N2: Same Route, Opposite Direction

N3: Other Routes, Similar Destinations

Network Accessibility Measures

- H₁: Stops from which one can reach the N3 neighboring stops (Interest: Feeders for potential transfers)
- H₂: Downstream stops that can be reached from subject stop via the transit network (Interest: Capture potential downstream activities)
- H₃: Upstream stops that can be reached from the N2 stops (Interest: Capture potential upstream activities)
- H_4 : Stops that can be reached from the N3 neighboring stops (Interest: Capture potential activities on other routes)
- H_5 : Stops in H_4 that overlap with stops in H_3 (Interest: Capture potential competing activities)

T-BEST

- Computing Transit Accessibility
 - Access / Egress at Given Stop
 - Accessibility to Other Stops
- > Composite Impedance Factors
 - Wait Time # of Transfers

 - In-vehicle Time Transfer Fare
- Boarding Time Transit Walking Time

- > Estimate Boardings at a Stop by:
 - Route
 - Direction
 - Time Period
- Model Estimates two Boarding Types:
 - Direct (Walk, Bike & Auto Access)
 - Transfer (Transit Access)

Direct Boarding Equation

$$D_n^s = f(R_n^s, B^s, O_{2n}^s, O_{3n}^s, O_{4n}^s, O_{5n}^s, X_n^s) \qquad n = 1, ..., N$$

- *s* refers to stop on a route in a given direction and
- *n* refers to time period
- D = direct boardings
- R = number of bus runs (arrivals)
- B = vector of buffer characteristics (population/employment)
- O_i = accessibility measures = characteristics of buffer areas of accessible stops, H_i , i = 2, 3, 4, 5
- X = vector of other route and stop characteristics

Transfer Boarding Equation

$$T_{n}^{s} = g(R_{n}^{s}, O_{1n}^{s}, O_{2n}^{s}, O_{3n}^{s}, O_{4n}^{s}, O_{5n}^{s}, Y_{n}^{s})$$

- T = transfer boardings
- R = number of bus runs (arrivals)
- O₁ = accessibility measure = total boardings at all stops, H₁, during period *n* toward stop *s*
- Y = vector of other route and stop characteristics
- Methodology thus includes both direct and transfer boardings equations
- Accessibility vectors play major role

n = 1, ..., N

T-BEST Data Requirements

- > Transit Route & Stops Location
- > Transit Route Schedule
- > Transit Route & Stop Names
- > Transit System
 - Fare Structure
 - Transfer Hubs
 - Interlined Routes

T-BEST Data Requirements

- Florida Source Data provided with the software:
 - 2000 Census data with pre-formatted SF1 and SF3 variables
 - 2000 InfoUSA Employment data grouped by Commercial, Industrial, and Service
 - 2000 GDT Street Networks
 - Other background GIS layers

Model Outputs

- T-BEST Calculates
 - Direct + Transfer = Total Boardings
 - Arrivals
 - Transfer Opportunities
- > Time-Period Specific Estimations
 - Peak

Saturday

Off-Peak

Sunday

- Night
- Aggregate Model Outputs by:
 - Weekday
 - Weekend
 - All Time Periods

T-BEST

Time Period Aggregation

Example:

Θ

Route 101 Inbound Stop # 10161000

Model Results by Time Period

	Peak 😑	Off-Peak 😒	Night 😒	Saturday 😑	Sunday 😑		
Direct	5	3	3	2	2		
Boardings							
	Weekday = 1 ²	1	Weekend = 4				
Time Period							
Aggregate Results	All Time Periods = 15						

Route Level Aggregation Outputs

- > Performance Measures
 - Boardings
 - Route / Service Miles
 - Service Hours
 - Boarding per Service Mile / Hour
 - Average Boarding per Service Run
 - Aggregation by:
 - Route Type
 - Technology

T-BEST

Report on All Routes = System-wide Analysis

Area-Based Aggregation

- Summarize Model Results with a Polygon Shapefile (Districts, TAZ, Census Blocks, etc.)
- > User-Defined Global Subareas
 - Analyze Model Output across multiple Scenarios

T-BEST Reports

- Calculates Sub-Totals by Route or Planning Area
- > Total for all selected inputs (stop, route, area)
- > Automatic Map Display Stop-level boardings (pie chart) or area distribution

Comprehensive Model System

- Manage Multiple Transit Systems
- Scenario/Alternative Management Tools
- Update Base Year Model
- Internal Model Runs

T-BEST

Unlimited Analysis potential

T-BEST

Transit System Management

- •Create new Transit Systems
- •Manage Existing Transit Systems
- •Delete Systems
- •All Files/Data managed internal in the software

Scenario/Alternative Management

	🕽 Model Properties			
S S J J M M M S	Scenario FSUTMS T-BEST can derive employment data from InfoUSA format. Please reference the T-BEST User Guide for Select Employment Data Source C InfoUSA (Default) FSUTMS ZDATA2 D:\Projects\FDOT\TRANSIT\Production\Source	or complete ZDATA2 formatting instructions.	ario ario rrio(s) enario s	 Manage Alternatives Create Base Year Model Adjust Socio- Economic Variables to Future Year Incorporate Local Employment Data
		Cancel OK		
	T-BEST		_	🎽 Gannett Flemin

System Properties

T-BEST

					Transfer	Hubs
Fare for First	Wait Time: \$∏		0.75		FCCJ	
Transfer Fare	: \$		0		RESQ	
Inflation Rate	: [0	%		Add Delete
nterlined Ro	50 KG					
Select an Inte	Route B		Idee	stifu tha lu	nterlined Stop	
701 704	801 804				irection A:	
705	805		705	564310		===> 80574320
707	807		Rou	ite 805 D	irection A:	Route 705 Direction
708	809	~	808	563630	• =	===> 70573640
708 709 710	010					

- Fare Structure
- Transfer Hubs
- Interlined Routes
- Local Employment
 Data
- Socio-Economic growth applied to future year forecasts

Scenario Editor

- Integrated editing, coding and analysis environment
- GIS-enabled network editing
- Time Period specific variables
- Stop-level socioeconomic updates

GEODECISIONS

GIS Features

- •T-BEST developed with ArcObjects
- Add local data or images
- Edit Symbols and Labels
- Save custom Map setup with Scenario

Model Equations

Variable	Peak	Off-Peak	Night	Saturday	Sunday	1
02 Population	-0.00009	0.00006	0	0.00017	0	
03 Population	0.00005	0	0	0	0.00017	
04 Population	0.00014	0.00013	0.00007	0	0.00012	
05 Population	0	0	0	0	-0.00091	
06 Population	0	0	0	0	0.00045	
05 - 06 Population	-0.00078	-0.00058	-0.00047	-0.00039	0	
05 + 06 Population	0	0.00013	0	0	0	
02 Employment	-0.00006	-0.00015	-0.00012	-0.00013	0	
03 Employment	0.0005	0.0001	0.0002	0.00034	0	
04 Employment	-0.00009	-0.00008	0	0.00014	0.00006	
05 Employment	0	0	0	0.00042	0	
06 Employment	0	0	0	-0.00121	0	
Frequency						
ARRIVALS	0.07981	0.04972	0.07391	0.05805	0.07657	
N1 + N3 Frequency	0	0	0	0	0	
Population						
TOTAL POPULATION	0.00255	0.00178	0.00332	0.00094	0	

• Edit Direct and Transfer Boarding Coeffecients

Interactive Reporting

Boardings Estimation

Jacksonville (Demo) - TRANSIT ROUTE SUMMARY (PEAK)											
ROUTE	TRANSFER OPPORTUNITIES	DIRECT BOARDINGS	TRANSFER BOARDINGS	TOTAL BOARDINGS	REVENUE SERVICE TRIPS	ROUTE	REVENUE SERVICE MILES	REVENUE SERVICE HOURS	BOARDINGS PER SERVICE MILE	BOARDINGS PER SERVICE HOUR	BOARDING SERVICE T
WS 3(AB)	545	68	16	84	4	10.5	42	4	2	20.96	20.96
ws 3(BA)	629	40	22	62	4	10.3	41	4	1.52	15.6	15.6
WS 6(AB)	277	38	24	61	4	9.4	38	3	1.62	20.47	15.36
WS 6(BA)	702	50	31	80	4	10	40	4	2.01	20.08	20.08
WS 7(AB)	556	62	17	79	8	12	96	9	0.83	8.81	9.91
WS 7(BA)	616	47	21	68	6	11.8	71	6	0.96	11.4	11.4
WS 9(AB)	211	38	11	49	4	9.2	37	3	1.32	16.33	12.24
WS 9(BA)	634	49	22	70	4	10.7	43	4	1.64	17.58	17.58
WS 12(AB)	663	74	27	100	4	11	44	4	2.28	25.06	25.06
WS 12(BA)	709	37	31	68	4	10.5	42	4	1.61	16.92	16.92
WS 34(AB)	307	3	4	6	3	9.7	29	3	0.22	2.16	2.16
WS 34(BA)	346	9	5	14	3	12.5	38	3	0.36	4.52	4.52
WS 37(AB)	0	0	0	0	0	0	0	0	0	0	0
WS 37(BA)	79	4	3	8	1	0	0	0	0	0	7.61
NS 1(AB)	570	121	24	145	10	7.1	71	6	2.04	24.15	14.49
NS 1(BA)	200	33	21	54	9	6.5	58	5	0.93	10.75	5.97
NS 2(AB)	527	66	41	107	9	8.1	73	7	1.46	15.27	11.87
NS 2(BA)	207	31	27	58	9	6.3	57	5	1.01	11.51	6.39
NS 4(AB)	693	177	63	240	22	9	199	18	1.21	13.35	10.92
NS 4(BA)	383	87	77	164	12	6.8	82	7	2	23.48	13.7
NS 5(AB)	695	176	63	239	13	9.1	119	11	2.01	21.71	18.37
NS 5(BA)	340	72	63	135	12	7.5	90	8	1.5	16.84	11.22
NS 6(AB)	324	124	36	159	8	10.9	87	8	1.83	19.93	19.93
NS 6(BA)	558	69	69	139	8	10.2	82	7	1.69	19.79	17.32
NS 11(AB)	262	67	29	96	8	7.2	58	5	1.66	19.24	12.02
NS 11(BA)	518	66	50	117	9	8.4	76	7	1.53	16.66	12.96
NS 14(AB)	302	49	31	81	4	11.1	45	4	1.8	20.21	20.21
NS 14(BA)	403	33	46	78	4	11.1	44	4	1.78	19.62	19.62
NS 15(AB)	334	72	20	93	12	4.8	58	5	1.6	18.55	7.73
NS 15(BA)	712	98	35	133	12	6.3	75	7	1.78	19.02	11.1
NS 15(AB)	0	0	0	0	0	0	0	0	0	0	0
NS 15(BA)	Ő	õ	ů.	ŏ	0	Ő	Ő	Ő	Ő	0	0
NS 20(64)	539	152	81	233	8	20.7	166	15	14	15.53	2913

Route-level Performance Measures

- Aggregate Records by:
- •Route(s)
- •Sub-Area
- Selection Set
- •Planning Area

Analysis Mapping

- Automated Map Analysis
- Flexible Mapping
 Environment

Quality Control Measures

- Visualize Model Accessiblity Calculations with impedance (H1-H5)
- Locate Neighboring
 Stops (N1 N3)
- Shortest Path Algorithm

Model Engine

l odel Run O Select Time P	eriod(s) to mode	ŀ
✓ Peak ✓ Off-Peak ✓ Night		
✓ Saturday ✓ Sunday		
6		

- Time Period Specific output for each stop
- Option to run for selected time-periods
- Optomized model calculations to run only necessary components

Additional Features

- Direct conversion of T-BEST Map into ArcMap Layout
- Export all Reports or lists to delimited text files
- •Export Map to raster or PDF
- •Save Sub-Areas and Selection Sets for use in multiple Scenarios
- •Scenario Log
- •Extensive User-Guide

T-BEST Implementation

Default Implementation

- Download & Install Software (www.tbest.org)
- Default coefficients provided
 - Calibration for Portland, Oregon in progress
- Calibration to Local Area
 - Local Stop Level Ridership Data
 - Develop Socio-Economic data
 - Create T-BEST Transit Network
 - Re-estimate and Re-calibrate

T-BEST Implementation

Custom Implementation

- Software
- > Data Model
- Interface with Systems Planning and Operational Software
 - Scale T-BEST to your Enterprise Environment

Database	Network Structure			
Oracle	Oracle Spatial			
SQL Server	SDE			

T-BEST Implementation

- > Recommended Hardware
 - 2.0 gHZ Pentium M Processor or higher
 - 1 GB Ram
- Required Software
 - Window 2000 or XP
 - ArcView 9.x

T-BEST

Conclusions

- T-BEST provides a powerful framework for modeling transit ridership at stop level
- Incorporates effects of accessibility and connectivity on ridership
- Accessibility and impedance computations very sophisticated, accurate, and automated in software
 - More precisely accommodates effects of service span and frequency (temporal aspects)
 - Focus on ease of use and quick response capability

Future Enhancements

- > Enhancements for T-BEST 3.0:
 - Automated calibration and scaling procedures
 - T-BEST Analyzer

T-BEST

- Enhance stop-level accessibility measure using alternative methodologies (e.g., network-based, regression, TLOS)
- Statewide Transit Network Input

Future Enhancements

- > Enhancements for T-BEST 4.0:
 - Develop sets of equations for different urban area sizes and trip purposes
 - Spatial distribution of boardings to develop a stop-to-stop O-D matrix
 - Greater sensitivity to route type, technology type, park-n-ride facilities, and special generators

