# ArcIMS-Based Land Development Monitoring: Prototype for Harford County, Maryland 

Zorica Nedović-Budić<br>Tolga T. Yilmaz<br>Gerrit-Jan Knaap


#### Abstract

The goal of this project was to design and develop a prototype web-GIS site that would facilitate monitoring of local urban development. In face of persistent problems with urban sprawl and increasing efforts to curb it with smart growth and other policies, this web site would allow the various stakeholders to: a) review the location, pattern, and intensity of previous development; b) examine the development capacity allowed by existing land use regulations; and c) explore the development setting in terms of environmental sensitivity, demographic and economic trends, and availability and accessibility to local amenities. The prototype is created using ArcIMS and customized using JavaScript for online selection, display, editing, and analysis of GIS data and land monitoring indicators. It will be used for developing web sites for other counties in Maryland and extending to multiple time periods. The project is sponsored by the National Center for Smart Growth Research and Education, University of Maryland.


http://arcims.rehearsal.uiuc.edu/website/harford

## INTRODUCTION

As a result of population and economic growth and immigration, urban areas are continuously expanding. Almost 90 percent of the population increase in the United States since 1980 has occurred in cities, towns, and urban areas (Porter 1997). The U.S. Bureau of the Census projects that by 2050 the population will reach 400 million (http://www.census.gov, accessed in September 2004). Cities are annexing new lands, reviewing development proposals, redeveloping deteriorated or underused areas, and imposing various new regulations. Decisions and actions are taken on daily basis by many actors involved in the land development process. How can cities effectively manage this process? How can they track the changes over time? How can they assess the availability of land for new development? How can they learn about the effects planning documents have on the urban development process? How can they prevent the negative effects of urban sprawl and promote sustainable development? We propose that geographic information systems (GIS) based land monitoring tools could be used to manage urban development and address the problems associated with urban growth.

Urban growth contributes to extensive consumption of land, especially at the urban fringe (Porter 1997), environmental damage and pollution (Brower et al, 1991), increased cost of land and housing (Bollens and Godschalk, 1987), and expanded ecological footprint resulting from increased use of local and global natural resources (http://www.infoforhealth.org/pr/m16/m16chap4.shtml 2004). Land monitoring emerged
in the 1970s as a way of managing urban growth and dealing with its consequences. Land monitoring involves recording of land use information and changes over time in order to track land development, analyze the patterns of development, and evaluate potential future uses of land by taking zoning and other regulations into consideration (Knaap 2001; Moudon 2000). The suggested benefits of this approach include: promotion of smart urban growth; support for orderly and efficient growth patterns; improved social and economic opportunities; and protection of rural landscape.

Land monitoring has become increasingly important during the 1990s with more pronounced concerns with urban sprawl and the heightened sense of their urgency (Moudon 2000). Although the automated (computerized) land monitoring has been practiced for over two decades (Bollens and Godschalk, 1987), it is also in the 1990s that the affordability, user-friendliness and accessibility of geographic information systems (GIS) technology promises to enhance the challenging task of monitoring urban growth. However, despite this potential, GIS tools are not used extensively in land monitoring activities as evidenced by the survey 'Assessment of Regional GIS Capacity for Transportation and Land Use Planning' (Knaap and Nedovic-Budic, 2003). The survey results suggest that in majority of metropolitan areas land monitoring and urban growth management are not practiced and that GIS is rarely used for these purposes. The main obstacles for GIS employment are the unavailable data, outdated datasets, and difficulties in data integration at the regional level. Clearly, accurate, complete, and current GIS database is crucial for land monitoring to be performed.

The problems of database development and maintenance notwithstanding, more recent developments in Internet-based GIS offer additional possibilities in access and sharing of spatial data (Kingston et al, 2000; Dragicevic, 2004; Peng, 2001). Some of the advantages of Internet-based GIS over the standard desktop GIS include:

- More user-friendly interface that allows users not knowledgeable in GIS functions to perform spatial inquiries and analyses;
- Less costly access by the users;
- Customization with additional links and information, and thus increased information sharing capacity; and
- Better interaction facility through 'on-the-fly' drawing and commenting.

Extending on the previous efforts in developing tools to aid urban land monitoring and growth management, we pursue two main objectives:

1. Identification of a set of GIS-based indicators to be used in a land development monitoring system; and
2. Development of an Internet-based GIS tool that facilitates and assists monitoring of land development.

This web site would allow various urban development stakeholders to review the location, pattern, and intensity of previous development; examine the development capacity allowed by existing land use regulations; and explore the development setting in terms of environmental
sensitivity, demographic and economic trends, and availability and accessibility to local amenities.

## METHODOLOGY

Our approach includes identification of land development indicators as an integral initial part of the project. Indicators provide "an empirical interpretation of reality" (Crane and Daniere, 1996) and are commonly used to present quantitative and often simplified account of a complex situations or processes. They often point out or identify phenomena that are not immediately visible, audible or perceived. Indicators translate data and statistics into succinct information that can be readily understood and used by a variety of interested groups. Banerjee (1996) proposes the following purposes of indicators:

- Measuring performances of policies and programs;
- Examining trends;
- Monitoring the condition of a city or a region;
- Informing decision-makers;
- Raising awareness of the public;
- Defining targets and setting planning objectives; and
- Raising red flags in an early warning system.

We identify a comprehensive set of GIS-based indicators for land development monitoring. The indicators are grouped under 9 main themes: 1. Land Utilization \& Consumption, 2. Development Capacity, 3. Regulation and Administration of Development, 4. Environment and Land Preservation, 5. Housing, 6. Economy, 7. Transportation, 8. Utilities and Services, and 9. Demographics (Appendix A).

Project data in GIS and table (spreadsheet) formats are derived from a variety of sources, including:

- The University of Maryland;
- Maryland Department of Planning (http://www.mdp.state.md.us/);
- Environmental Systems Research Institute (http://www.esri.com);
- United States Bureau of the Census (http://www.census.gov);
- State Soil Geographic (STATSGO) Database (http://www.ncgc.nrcs.usda.gov/products/datasets/statsgo/); and
- GIS Data Depot (http://data.geocomm.com/)

The essential dataset for this study is the Property point data developed by the State of Maryland Department of Planning. The dataset contains important information about individual properties, such as: improvement value, land use, zoning, and parcel/lot area. This information is integrated with other sources and used for deriving most of the GISbased indicators. The other GIS data include: priority funding areas (PFA), municipal boundaries, preserved areas, urban areas, wetlands, floodplains, prime farmlands, slope, roads, railroads, and census tracts.

Indicators are derived using basic ArcGIS functions, such as geoprocessing tools (merge, union, intersect), querying and selecting by attribute and/or location, buffering, creating new fields, calculating values, and re-classifying layers. Appendix B contains detailed steps used in GIS data processing. ArcIMS 4.0 is used to provide the Internetbased functionality to allow for viewing and analysis of maps and GIS data via the World Wide Web. Finally, the prototype application was customized with JavaScript (Figure 1). At the user end, the browser has to be JAVA enabled. The application is viewed with ESRI's ArcIMS Viewer, which is prompted for download at the first attempt to access the application.

Figure 1. Prototype Development Framework


Web-Server

## PROTOTYPE DEVELOPMENT

The project objectives are accomplished by developing a prototype Internet GIS-based land monitoring site for Harford County, Maryland. Maryland is chosen for this development for its extensive growth rates over the past several decades (35\% growth from 1970 to 2000), high urban densities ( $6^{\text {th }}$ most dense state in the U.S.), its long history of proactive management of urban growth issues, and reliance on land monitoring tools. The legislative initiatives that started with 1974 Land Use Act have been recently complemented with 1997 Smart Growth Legislation and 2003 Priority Places Executive Order. The order enabled the Maryland Department of Planning to establish statewide Priority Funding Areas (PFA) and rural legacy areas.

The main frame of the prototype web site has five sections (Figure 2): 1. Navigation and Drawing Tools; 2. Main Map; 3. Overview Map; 4. Indicators; and 5. Legend.

NAVIGATION \& DRAWING TOOLS: Navigation Tools allow to: a) navigate (Zoom, Pan) on the MAIN MAP, b) conduct GIS analysis (Query, Buffer, Measure), and c) get information about the layers (Identify, Show Select). Drawing Tools allow to add text and/or graphics to the MAIN

MAP and to store them as a data layer (See Appendix D for more information).
MAIN MAP displays layers by either clicking on the LEGEND or INDICATORS.
OVERVIEW MAP allows to view the whole county and identifies the extent of the MAIN MAP with a red box. Dragging the box by holding the left mouse button will move the current extent of the MAIN MAP.

INDICATORS allow to select, display, and examine the land development indicators.
LEGEND allows to: a) Displays the layers on the MAIN MAP by clicking on the checkbox next to the layer name (to exclude a layer from the MAIN MAP, uncheck the box); b) View the shapes (line, point, and polygon) and colors that the layers contains; c) Change the order of the layers by activating the layer and moving it up or down the LEGEND by holding the mouse button over that layer; some layers may not be visible even when checked due to being covered with features of other layers.

Figure 2 - Prototype Home Page Layout


The prototype application is created using ESRI's ArcIMS software and customized using JavaScript for the following features: a) Links that explain how an indicator is
derived (procedure and data used) and demonstrate pre-calculated results of the indicators; b) Checkboxes \& Update Map button that displays the relevant layer on the MAIN MAP. Additionally, to make the website more user-friendly, explanations of NAVIGATION \& DRAWING TOOLS are written next to each tool; INSTRUCTIONS link is provided to explain each part of the website and to further instruct the users how to do their own analysis using GIS tools; and layout of the default website is customized so that the MAIN MAP has a larger display area. The programming script for the frame and for the indicators is provided in Appendix C. Instructions for use of the navigation and drawing tools are in Appendix D.

Display and examinination of the land development indicators is the main functionality of this prototype ArcIMS application. The indicators are selected by first choosing one of the seven categories under which they are organized and then clicking on the checkbox next to the indicator's name. Clicking on the Update Map button displays in the MAIN MAP area the layer associated with the selected indicator (Figure 3); the layer is also automatically checked in the LEGEND. Clicking on the indicator's name opens the screens with tables (Figure 4) and charts (Figure 5) associated with that particular indicator. To display another indicator, the user has to check the box next to the newly desired indicator, uncheck the previous indicator, and click on the Update Map button.

The application also provides for a basic editing functionality that allows the user to add text and graphics by using Drawing Tools. The possible edis include: line, polygon, rectangle, circle, text, image, and freehand drawings. Editing results in a new layer that can be saved and retreived for later display and use. Finally, to be able to take advantage of the GIS quirying functions, the layer has to be made active by clicking on the layer's name. The box around the layer's name looks raised.

Figure 3. Selecting an Indicator and Displaying a Layer


Figure 4. Displaying a Table Associated with an Indicator


Figure 5. Displaying a Chart Associated with an Indicator


## CONCLUSION

The Internet-based GIS for land development monitoring has been prototyped as an approach that allows the user to interact and analyze GIS data and display a set of predetermined indicators. Such ArclMS-based application can be a useful resource for city, county, metropolitan, or state level planning agencies and a variety of other organizations in public, private, and non-profit sector. For example, planning agencies could use this website to:

1. Inform the other agencies and the public about the latest trends in the region's land development;
2. Rely on the indicators to explore the local development conditions, e.g., locate undevelopable land or calculate development capacity;
3. Compare development patterns over time, monitor the changes, and plan accordingly;
4. Employ the system in charettes, public meetings, and open houses to inform and discuss future developments with various stakeholders;
5. Perform spatial analyses using the GIS functionality.

The general public might use the website to learn about their region's development. For instance, a citizen may use the system to:

1. Spot the improved and unimproved properties in their neighborhood;
2. Measure distance between development points;
3. Examine the differences among various parts of the county in terms of per-capita-income, commute-time, and housing value;
4. Check into the zoning regulations;
5. Edit the maps to record their ideas, complaints or suggestions about a certain area;
6. Learn more about the location of preserved areas and environmentally sensitive lands.

Finally, land developers might use the website to access information about the unimproved and/or under-improved lands, their location, size, distance to a facility (school or park), and surrounding land uses.

In face of persistent problems with urban sprawl - extensive consumption of land, damaged environmental quality, overexploited natural resources, increased cost of land and housing, and expanded ecological footprint - the prototype application described in this paper facilitates land development monitoring and assists management of urban growth and dealing with its implications. The main challenge of providing a complete and comprehensive land development monitoring system lies in the availability of current and historic data. Beyond this prototype, further developments are needed to include other counties in the State of Maryland and to incorporate multi-year datasets and indicators for monitoring change and performance over time.

## AKNOWLEDGEMENTS

The co-authors would like to thank all individuals who were involved in this prototype development project and helped with their feedback, insights, and data. Our appreciation goes to Laurel Davis, John Frece, Rick Valentine, and Maryland Department of Planning.

## APPENDIX A - Land Development Monitoring Indicators

|  | LAND MONITORING INDICATOR | MEASURE | $\begin{aligned} & \text { MEASUREMENT } \\ & \text { UNIT } \end{aligned}$ | BENEFITS OF THE INDICATOR |
| :---: | :---: | :---: | :---: | :---: |
| Land Utilization \& Consumption | Current Use | 1. Areas in various land uses (land use defined by local code) <br> 2. Areas under different land cover categories (based on satellite image) | 1. Acres and \% of total <br> 2. Acres and \% of total | Evaluation of the current pattern and determining the future opportunities for development |
|  | Residential Density | 1. Total population divided by total residential acres <br> 2. Total households divided by total residential acres <br> 3. Total dwelling units divided by total residential acres <br> 4. Residential lot size mean / medium (SFR, MFR) | 1. Persons per Acre <br> 2. Households per Acre <br> 3. Dwelling Units per Acre <br> 4. Acres | Monitoring of population growth and residential pattern over time and consideration of the locations of future residential developments |
|  | Employment Density | Total employees divided by the sum of commercial, industrial, and institutional acres | Employees per Acre | Monitoring of employment growth and pattern over time and evaluation of the locations of future employment centers |
|  | Land Use Mix | Sum of commercial, industrial, and public land use acres divided by total number of housing units | Acres per Dwelling Unit | Assessing the balance and pattern of land uses within the county |
|  | Land Consumption by Sector | Difference in area under residential, industrial, or commercial use within two consecutive years | Acres per year | Determining the pace of land conversion by sector |
|  | Intensity of Growth | Population change divided by consumption of land by land use type within the same period | Persons per Acre (total and by land use) | Assessment of the conversion of buildable land relative to population growth and of the expected land consumption |
| Development Capacity | Developed Land | Sum of areas under commercial, industrial, public and residential use | Acres | Promotion of sustainable growth patterns, better quality of development, efficient provision of infrastructure, and preservation of open space, protection of farm and forest lands, significant natural areas, wetlands, and endangered species |
|  | Vacant Land | Land parcels with \$0 value of improvement | Acres |  |
|  | Vacant Land by Zoning | Vacant land parcels zoned residential, industrial, commercial, and mixed use | Acres |  |
|  | Net Vacant Buildable Land | Total area of vacant land minus sum of environmentally constrained land, federal, state, county, or city-owned land, acres of plotted single-family lots, streets, schools, parks, places of worship acres | Acres |  |


|  | Undevelopable Land | Total area of public ownership, underwater lands, lands that have slope equal or more than $15 \%$, wetlands, prime and unique farmlands, floodzones, significant natural areas, and lands within environmental zone | Acres |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Potentially Developable Land | Total area of all lands not classified as undevelopable: Currently undeveloped, privately-owned, sites not underwater, and having an average slope of $15 \%$ or less, excluding wetlands, prime and unique farmlands, floodzones, and significant natural areas | Acres |  |
|  | Potentially Developable and Accessible Land | Total area of potentially developable lands within 10 km of a major roadway and within 10 km of existing urban development | Acres |  |
|  | Underdeveloped Land | Nonvacant land parcels that have improvement value less then the value of 1 percentile and the ratio of improvement to land value less than the value of 1 percentile | Acres |  |
|  | Redevelopment Capacity | Underdeveloped land multiplied by dwelling units per acre or floor areas allowed by zoning - total, residential, commercial and industrial | Number of Dwelling Units, Commercial Floor Area, Industrial Floor Area |  |
|  | Infill Land | Vacant land parcels smaller than 1 acre and surrounded by developed land | Acres |  |
|  | Infill Capacity | Area of infill land multiplied by dwelling units per acre or floor areas allowed by zoning - total, residential, commercial, and industrial | Number of Dwelling Units, Commercial Floor Area, Industrial Floor Area |  |
|  | Development Capacity | Development allowed by zoning minus existing development - total, residential, commercial, and industrial | Acres, Number of Dwelling Units, Commercial Floor Area, Industrial Floor Area (ratio?) |  |
|  | Transit-Oriented Development Capacity | Land adjacent to transit stations minus developed land | Acres, square feet |  |
| Development Regulations \& Programs | Subdivision Process | Number of applications, number approved, median time between application and final decision. |  | Monitoring the development processes, evaluating the plan |


|  | Building Permit Process | Number of applications, number approved, median time between application and final decision. |  | implementation tools and programs. |
| :---: | :---: | :---: | :---: | :---: |
|  | Zoning Process | Number of applications, number approved, median time between application and final decision, change in development capacity. |  |  |
|  | Brownfield Redevelopment |  |  |  |
|  | Rehabilitation of Housing |  |  |  |
|  | Renovation of Historic Buildings (historic tax credit program) |  |  |  |
|  | Open Space Acquisition | 1. Amount of land acquired over time <br> 2. Cost of acquisition |  |  |
| Environment \& Land Preservation | Parks | Areas under park use | Acres |  |
|  | Linear Green Space | Area under greenways and trails | Acres |  |
|  | Recreation Accessibility | 1. Population within walking distance ( $1 / 4$ mile) of public parks, greenways and trails <br> 2. Areas that are within walking distance ( $1 / 4$ mile) of public parks, greenways and trails (buffer using the street network) | 1. Number and Percentage of People <br> 2. Acres and Percentage of Total | Identification of the areas with limited access to parks and open spaces; planning for improvement |
|  | Forest Cover |  | Acres | Protection of the environment and promotion of sustainable growth patterns |
|  | Environmentally Sensitive Land | Total area in environmentally sensitive areas (Note: Sensitive includes wetlands, floodplains) | Acres |  |
|  | Land Conserved / Protected | Total acres in conservation by program (Various types of conservation programs, including rural legacy program, farmland protection programs); cost | Acres |  |
|  | Contiguity Of Protected Lands |  |  |  |
|  | Waste Recovery Generation |  | Dollars per Acre |  |
| Housing | Dwelling Units by Type | Total number of housing units (SFR, MFR) | Dwelling Units |  |
|  | Ratio of Housing | Total SFR/MFR acres divided by total residential acres | Percentage |  |
|  | Housing Growth | Change in the number of dwelling units by type (SFR, MFR) | Dwelling Units per Year | Evaluation of the housing trends and future needs. |
|  | Value Of Housing | Average equalized assessed value for SFR, MFR | Current Dollars |  |
|  | Housing Price | Median sales price of single family homes | Current Dollars | Assessment of the housing market, housing affordability, and supply. |
|  | Housing Affordability Gap | Difference between median sales price and the price of a house affordable to a median income family. | Current Dollars |  |


|  | Housing size (sq feet) |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Homeownership rates |  |  |  |
|  | Housing Starts | SF, MF |  |  |
|  | Projected population demand for housing |  |  |  |
| Economy | Firms | 1. Total number of firms <br> 2. Total number of firms by sector | Number of Firms | Evaluates current patterns and conditions and assesses potential job creation areas. Ensures fiscal and social equities among communities. |
|  | Earnings | 1. Total earnings <br> 2. Total earnings by sector | Total Dollars |  |
|  | Jobs | 1. Total number of jobs <br> 2. Total number of jobs by sector <br> 3. Jobs per developed industrial land <br> 4. Jobs per developed commercial land | 1-2. Number of FTE Jobs 3-4. Number of Jobs per Acre |  |
|  | Employment Capture Rate | The proportion of the region's employment |  |  |
|  | Employment Growth | Employment growth by industry by census tracts | Number of Jobs | Evaluates the employment \& population growth and assesses the future population and employment increases. |
|  | Employment Forecast | Employment forecast by industry by census tracts |  |  |
|  | Median Family Income | Median family income by census tract | Current Dollars | Ensures fiscal and social equities among communities. |
|  | Per capita Income |  |  |  |
|  | Poverty Rate |  |  |  |
| Transportation | Vehicle Miles Traveled | Total miles traveled by vehicles | Miles | Evaluates transportation infrastructure and promotes compact, sustainable growth patterns and prevents urban sprawl. As a result lowers the cost of infrastructure. |
|  | Vehicles Registered |  |  |  |
|  | Bus/Transit Ridership | Total trips on bus and transit systems | Number of Trips |  |
|  | Commute Time | Average commute time. | Minutes |  |
|  | Pedestrian Accessibility | Percent of households within $1 / 4$ network mile of parks, commercial uses, transit and bus stops | Percent of Households | Promotes accessible and higher quality environments. |
|  | Transit Accessibility | Percent of parks, commercial floor space, institutional acres within $1 / 4$ network mile of transit stop or bus line | Percent of Acres |  |
|  | Miles of bike lanes |  |  |  |
|  | Transit Investment - Percent of Roads vs. Transit vs. Bike and |  |  |  |


|  | Pedestrian |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Number of bad air quality days per year (and comparisons with other cities) |  |  |  |
|  | Measurements of connectivity |  |  |  |
|  | Miles of sidewalks and trails constructed |  |  |  |
|  | Lane miles of new roads constructed per year |  |  |  |
| Utilities \& Services | School Service | Capacity - ratio of number enrolled students divided by total capacity | Percent |  |
|  | School Construction Funds | 1. Total dollars of school construction funds spent <br> 2. State and local funds spent on public school construction <br> 3. Old schools vs. new schools <br> 4. Ratio of school construction funds spent inside growth/priority areas divided by total funds spent <br> 5. Amount or percent of school construction funds spent on renovation vs. new construction | 1. Total Dollars <br> 2. Total Dollars <br> 3. Total Dollars <br> 4. Percent <br> 5. Total Dollars / <br> Percent |  |
|  | Water Service | 1. Water network capacity <br> 2. Treatment capacity |  |  |
|  | Wastewater Treatment Capacity |  |  |  |
|  | Sewer Service | 1. Sewer network capacity <br> 2. Treatment capacity <br> 3. Planned extension |  |  |
|  | Fire Service | 1. Population served (by station) <br> 2. Average response time (by station) | 1. Number of People <br> 2. Minutes | Evaluation of location, capacity and quality of infrastructure services; provision of timely and efficient infrastructure. |
| Demographics | Population | Population based on decennial census and local estimates | Number |  |
|  | Birth Rate |  |  |  |
|  | Households | 1. Total number of households <br> 2. Average household size |  |  |
|  | Population Growth | Population growth by census tracts | Number, percentage, rate | Evaluates the employment \& population growth and |


|  | Population Forecast | Population forecast by census tracts |  | assesses the future population and employment increases. |
| :---: | :---: | :---: | :---: | :---: |
|  | Capture Rate (population, household) | The proportion of the region's population and household growth | Number, percentage | Measures how effectively the county is accommodating growth compared with the larger regional area. |
|  | Migration |  |  |  |

## APPENDIX B - Indicator Derivation - Steps

| LAND UTILIZATION \& CONSUMPTION: Current Use | Select the records from Properties layer that have Improvement Value larger than \$0 and include 'Agricultural' and 'Park' land uses [NFMIMPVL > \$0 OR DESCLU = 'Agricultural' OR DESCEXCL = 'Parks' OR DESCEXCL = 'Parks and Recreation'] <br> Re-Classify 'Exempt' and 'Exempt Commercial' land uses into 'Federal / Military' [DESCEXCL = 'Military Installations'], 'Parks' [DESCEXCL = 'Parks' OR DESCEXCL = 'Parks and Recreation'], and 'Public / Institutional' [DESCEXCL <> 'Military Installations' AND DESCEXCL <> 'Parks' AND DESCEXCL <> 'Parks and Recreation'] <br> - Determine land use types that are inside or outside PFA using the PFA field (ex: DESCLU = 'Agricultural' and PFA = 'Outside PFA') <br> - Calculate total area of each land use type using the ACRES_1 field <br> Apply Land-Based Classification Standards (LBCS) color code for the color scheme of the Current Use: "Jeer, Sanjay. 2001. Land-Based Classification Standards: American Planning Association: Chicago, Illinois." http://www.planning.org/LBCS |
| :---: | :---: |
| LAND UTILIZATION <br> \& CONSUMPTION: <br> Residential <br> Density | Select the records from Properties layer that have Improvement Value larger than \$0 and exclude 'Agricultural' and 'Park' land uses [NFMIMPVL > \$0 AND DESCLU <> 'Agricultural' AND DESCEXCL <> 'Parks' AND DESCEXCL <> 'Parks and Recreation'] - Identify residential properties using the DESCLU field <br> * Residential properties consist of: 'Residential', 'Residential Condominium', <br> 'Residential / Commercial', 'Apartments' from the land use categories [DESCLU = <br> 'Residential' or DESCLU = 'Residential Condominium' or DESCLU = 'Residential <br> Commercial' or DESCLU = 'Apartments'] <br> - Determine residential properties that are inside or outside PFA using the PFA field (ex: PFA = 'Outside PFA') <br> - Calculate total area of residential properties using the ACRES_1 field <br> - Obtain population and households numbers from 2000 Census Summary File Three from Maryland Department of Planning: <br> http://www.mdp.state.md.us/msdc/dw census2000.htm <br> - Calculate the dwelling unit number from the DWLL_NUM field in the Properties layer <br> - Divide Population, Number of Households, and Number of Dwelling Units with the total area of residential properties |
| LAND UTILIZATION <br> \& CONSUMPTION: <br> Residential Lot <br> Size | Select the records from Properties layer that have Improvement Value larger than \$0 and exclude 'Agricultural' and 'Park' land uses [NFMIMPVL > \$0 AND DESCLU <> 'Agricultural' AND DESCEXCL <> 'Parks' AND DESCEXCL <> 'Parks and Recreation'] - Identify residential properties using the DESCLU field <br> * Residential properties consist of: 'Residential', 'Residential Condominium', <br> 'Residential / Commercial', 'Apartments' from the land use categories [DESCLU = <br> 'Residential' or DESCLU = 'Residential Condominium' or DESCLU = 'Residential Commercial' or DESCLU = 'Apartments'] <br> - Reclassify 'Residential' category as Single Family Residential (SFR) <br> Reclassify 'Residential Condominium', 'Residential / Commercial', 'Apartments' categories as Multi-Family Residential (MFR) <br> - Determine SFR \& MFR uses that are inside or outside PFA using the PFA field (ex: <br> PFA = 'Outside PFA') <br> - To find the mean lot size: Right click on the ACRES_1 field and select statistics <br> - To find the median lot size: Sort out the ACRES_1 field in ascending order, then select the median property's value |


| LAND UTILIZATION <br> \& CONSUMPTION: <br> Employment <br> Density | Select the records from Properties layer that have Improvement Value larger than \$0 and exclude 'Agricultural' and 'Park' land uses [NFMIMPVL > \$0 AND DESCLU <> 'Agricultural' AND DESCEXCL <> 'Parks' AND DESCEXCL <> 'Parks and Recreation'] - Identify commercial, industrial, and public properties using the DESCLU field <br> * Commercial properties consist of: 'Commercial', 'Commercial Condominium', <br> 'Commercial Residential', 'Residential Commercial' from the land use categories <br> [DESCLU = 'Commercial' or DESCLU = 'Commercial Condominium', or DESCLU = <br> 'Commercial Residential', or DESCLU = 'Residential Commercial'] <br> * Industrial properties consist of: 'Industrial' land use category [DESCLU = 'Industrial'] <br> * Public properties consist of: ‘Public / Institutional' category [DESCLU = 'Public / Institutional'] <br> - Determine commercial, industrial, and public properties that are inside or outside PFA using the PFA field (ex: PFA = 'Outside PFA') <br> - Calculate total area of the commercial, industrial, and public properties using the ACRES_1 field <br> - Obtain employment numbers from 2000 Census Summary File Three (Population 16 years and over / in labor force / civilian labor force / employed): <br> http://www.mdp.state.md.us/msdc/PFA/2000census/sf3/harf P4.pdf <br> - Divide total employees by total area of the commercial, industrial, and public properties |
| :---: | :---: |
| LAND UTILIZATION <br> \& CONSUMPTION: <br> Land Use Mix | - Select the records from Properties layer that have Improvement Value larger than \$0 and exclude 'Agricultural' and 'Park' land uses [NFMIMPVL > \$0 AND DESCLU <> 'Agricultural' AND DESCEXCL <> 'Parks' AND DESCEXCL <> 'Parks and Recreation'] - Identify commercial, industrial, and public properties using the DESCLU field <br> * Commercial properties consist of: ‘Commercial', 'Commercial Condominium', <br> 'Commercial Residential', 'Residential Commercial' from the land use categories <br> [DESCLU = ‘Commercial' or DESCLU = 'Commercial Condominium', or DESCLU = 'Commercial Residential', or DESCLU = 'Residential Commercial'] <br> * Industrial properties consist of: 'Industrial' land use category [DESCLU = 'Industrial'] <br> * Public properties consist of: ‘Public / Institutional’ category [DESCLU = 'Public / Institutional'] <br> - Determine commercial, industrial, and public properties that are inside or outside PFA using the PFA field (ex: PFA = 'Outside PFA') <br> - Calculate total area of the commercial, industrial, and public properties using the ACRES_1 field <br> - Calculate total number of dwelling units from the DWLL_NUM field in the Properties layer <br> - Divide total area of commercial, industrial, and public properties by total number of dwelling units |
| DEVELOPMENT CAPACITY: Improved Land | Select the records from Properties layer that have Improvement Value larger than \$0 and exclude 'Agricultural' and 'Park' land uses [NFMIMPVL > \$0 AND DESCLU <> 'Agricultural' AND DESCEXCL <> 'Parks' AND DESCEXCL <> 'Parks and Recreation'] - Determine the records that are inside or outside PFA using the PFA field (ex: PFA = 'Outside PFA') <br> - Calculate total area of the records using the ACRES_1 field |


| DEVELOPMENT CAPACITY: Unimproved Land | Select the records from Properties layer that have Improvement Value equals to \$0 and exclude 'Agricultural' and 'Park' land uses [NFMIMPVL = \$0 AND DESCLU <> 'Agricultural' AND DESCEXCL <> 'Parks' AND DESCEXCL <> 'Parks and Recreation'] - Determine the records that are inside or outside PFA using the PFA field (ex: PFA = 'Outside PFA') <br> - Calculate total area of the records using the ACRES_1 field |
| :---: | :---: |
| DEVELOPMENT CAPACITY: <br> Unimproved <br> Land by Zoning | - Select the records from Properties layer that have Improvement Value equal to $\$ 0$ and exclude 'Agricultural' and 'Park' land uses [NFMIMPVL = \$0 AND DESCLU <> <br> 'Agricultural' AND DESCEXCL <> 'Parks' AND DESCEXCL <> 'Parks and Recreation'] <br> - Categorize the records using unique values and using ZONING2 field <br> - Determine records that are inside or outside PFA using the PFA field (ex: PFA = 'Outside PFA') <br> . Calculate total area of each zoning type using the ACRES_1 field |
| DEVELOPMENT CAPACITY: <br> Net Unimproved <br> Buildable Land | Select the records from Properties layer that have Improvement Value equal to \$0 and exclude 'Agricultural' and 'Park' land uses [NFMIMPVL = \$0 AND DESCLU <> 'Agricultural' AND DESCEXCL <> 'Parks' AND DESCEXCL <> 'Parks and Recreation'] <br> - Select the records that are outside the Environmentally Constrained Land and that are Privately Owned <br> * Merge layers: Wetlands and 100 and 500-Year Floodplains (Harford County, MD) Agricultural Preservation Program and Rural Legacy Program (ESRI), Prime Farmland (STATSGO), and Areas that have Slope of $15 \%$ or More (GIS Data Depot) to determine the Environmentally Constrained Land <br> * Overlay the Properties layer with Environmentally Constrained Land and select the records from Properties layer that are completely outside the Environmentally Constrained Land layer <br> * Select the records from Properties layer that have Exempt Status equal to 0 <br> [EXSTATUS = '0'] in order to find the Privately Owned Properties <br> - Determine the records that are inside or outside PFA using the PFA field (ex: PFA = 'Outside PFA') <br> Calculate total area of the records using the ACRES_1 field |
| DEVELOPMENT CAPACITY: Land Sensitive to Development | Merge layers: Wetlands and 100 and 500-Year Floodplains (Harford County, MD) Agricultural Preservation Program and Rural Legacy Program (ESRI), Prime Farmland (STATSGO), and Areas that have Slope of $15 \%$ or More (GIS Data Depot) to determine the Environmentally Constrained Land <br> Select the records from Properties layer that have Exempt Status not equal to 0 and Exemption Code Description not equal to 'Military Installations' [EXSTATUS <> '0' AND DESCEXCL <> 'Military Installations'] in order to find the Public Owned Properties <br> Overlay Environmentally Constrained Land layer with the Priority Funding Areas layer to find the Environmentally Constrained Land that is inside or outside PFA <br> Dissolve the Environmentally Constrained Land layer <br> Find the area of the Environmentally Constrained Land layer using the ACRES field <br> Select the records from the Public Owned Properties that are outside the <br> Environmentally Constrained Land and calculate their area using the ACRES_1 field <br> Calculate the total area of the Land Sensitive to Development by adding the area of the Environmentally Constrained Land and the area of the records from the Public Owned Properties that are outside the Environmentally Constrained Land |


| development CAPACITY: <br> Potentially Developable Land | Select the records from Properties layer that have Improvement Value equal to \$0 and exclude 'Agricultural' and 'Park' land uses [NFMIMPVL = \$0 AND DESCLU <> 'Agricultural' AND DESCEXCL <> 'Parks' AND DESCEXCL <> 'Parks and Recreation'] <br> - Merge layers: Wetlands and 100 and 500-Year Floodplains (Harford County, MD) Agricultural Preservation Program and Rural Legacy Program (ESRI), Prime Farmland (STATSGO), and Areas that have Slope of $15 \%$ or More (GIS Data Depot) to determine the Environmentally Constrained Land <br> - Select the records that are outside the Environmentally Constrained Land and that are Privately Owned <br> * Overlay the Properties layer with Environmentally Constrained Land and select the records from Properties layer that are completely outside the Environmentally Constrained Land layer <br> * Select the records from Properties layer that have Exempt Status equal to 0 <br> [EXSTATUS = '0'] in order to find the Privately Owned Properties <br> Determine the records that are inside or outside PFA using the PFA field (ex: PFA = 'Outside PFA') <br> . Calculate total area of the records using the ACRES 1 field |
| :---: | :---: |
| DEVELOPMENT CAPACITY: <br> Potentially Developable and Accessible Land | Select the records from Properties layer that have Improvement Value equal to $\$ 0$ and exclude 'Agricultural' and 'Park' land uses [NFMIMPVL = \$0 AND DESCLU <> 'Agricultural' AND DESCEXCL <> 'Parks' AND DESCEXCL <> 'Parks and Recreation'] <br> - Merge layers: Wetlands and 100 and 500-Year Floodplains (Harford County, MD) Agricultural Preservation Program and Rural Legacy Program (ESRI), Prime Farmland (STATSGO), and Areas that have Slope of $15 \%$ or More (GIS Data Depot) to determine the Environmentally Constrained Land <br> - Select the records that are outside the Environmentally Constrained Land and that are Privately Owned <br> * Overlay the Properties layer with Environmentally Constrained Land and select the records from Properties layer that are completely outside the Environmentally Constrained Land layer <br> * Select the records from Properties layer that have Exempt Status equal to 0 <br> [EXSTATUS = '0'] in order to find the Privately Owned Properties <br> Buffer Major Roads and Urban Areas layers by 10kms <br> - Overlay the selected records from Properties layer with the 10km buffer and select the intersecting records <br> - Determine the records that are inside or outside PFA using the PFA field (ex: PFA = 'Outside PFA') <br> - Calculate total area of the records using the ACRES_1 field |
| DEVELOPMENT CAPACITY: <br> Underimproved Land | Select the records from Properties layer that have Improvement Value larger than \$0 and exclude 'Agricultural' and 'Park' land uses [NFMIMPVL > \$0 AND DESCLU <> 'Agricultural' AND DESCEXCL <> 'Parks' AND DESCEXCL <> 'Parks and Recreation'] <br> - Select the records that have Improvement Value less than $\$ 25,000$ and Ratio of Improvement to Land Value less than 1 [NFMIMPVL < ' 25,000 ' AND RATIO < ' 1 '] <br> - Determine the records that are inside or outside PFA using the PFA field (ex: PFA = 'Outside PFA') <br> - Calculate total area of the records using the ACRES_1 field |


|  | - Select the records from Properties layer that have Improvement Value larger than \$0 <br> and exclude 'Agricultural' and 'Park' land uses [NFMIMPVL $>\$ 0$ AND DESCLU <> <br> 'Agricultural' AND DESCEXCL <> 'Parks' AND DESCEXCL <> 'Parks and Recreation'] <br> - Select the records that have Improvement Value Iess than $\$ 25,000$ and Ratio of <br> Improvement to Land Value less than 1 [NFMIMPVL < '25,000' AND RATIO < '1'] <br> - Categorize the records using unique values and using ZONING2 field |
| :--- | :--- |
| - Obtain density criteria by zoning category from the Maryland Department of Planning: |  |
| http://www.mdp.state.md.us/info/newmaps/zoneCategory.htm |  |
| - Determine the records that are inside or outside PFA using the PFA field (ex: PFA = |  |
| 'Outside PFA') |  |
| - Calculate total area of the records using the ACRES_1 field |  |


| development CAPACITY: Development Capacity | - Select the records from Properties layer that have Improvement Value larger than \$0 and exclude 'Agricultural' and 'Park' land uses [NFMIMPVL > \$0 AND DESCLU <> 'Agricultural' AND DESCEXCL <> 'Parks' AND DESCEXCL <> 'Parks and Recreation'] - Classify the records using ZONING2 field (ex: ZONING2 = 'Agricultural') <br> - Gather the zoning categories and their density criteria from the Maryland Department of Planning: http://www.mdp.state.md.us/info/newmaps/zoneCategory.htm <br> - Determine the records that are inside or outside PFA using the PFA field (ex: PFA = 'Outside PFA') <br> - Calculate total area of the records within each zoning category using the ACRES_1 field <br> - Calculate total dwelling unit number of the records within each zoning category using the DWLL_NUMB field <br> - Calculate total area of each zoning category using the ACRES field of Zoning layer <br> - Subtract the area of improved properties inside each zoning category from the total area of that zoning category to find development capacity in acres <br> - Multiply the total area of each zoning category with its density criteria and then subtract the total number of dwelling units of the improved properties inside each zoning category |
| :---: | :---: |
| ENVIRONMENT \& LAND PRESERVATION: Parks | - Select the records from Properties layer that have 'Park' land uses [DESCEXCL = 'Parks' OR DESCEXCL = 'Parks and Recreation'] <br> - Determine the records that are inside or outside PFA using the PFA field (ex: PFA = 'Outside PFA') <br> - Calculate total area of the records using the ACRES_1 field |
| ENVIRONMENT \& LAND <br> PRESERVATION: <br> Access to Recreational Areas | - Select the records from Properties layer that have 'Park' land uses [DESCEXCL = 'Parks' OR DESCEXCL = 'Parks and Recreation'] <br> - Buffer the 'Park' land uses by $1 / 2$ mile and $1 / 4$ mile radius using the buffer tool <br> - Select the Properties that are completely within the $1 / 2$ mile buffer zone (do the same for $1 / 4$ mile) <br> - Determine the records that are inside or outside PFA using the PFA field (ex: PFA = 'Outside PFA') <br> - Calculate total area of the records using the ACRES_1 field |
| ENVIRONMENT \& LAND <br> PRESERVATION: Wetlands and Floodplains | - Merge the Wetlands and Floodplains layers <br> - Union the merged Wetlands \& Floodplains layers with the Priority Funding Areas layer and determine the wetlands \& floodplains that are inside or outside PFA <br> - Calculate total area of the wetlands \& floodplains using the ACRES field |
| ENVIRONMENT \& LAND <br> PRESERVATION: <br> Conserved I <br> Protected Land | Merge the Agricultural Preservation Program and Rural Legacy Program layers - Union the merged Agricultural Preservation \& Rural Legacy Program layers with the Priority Funding Areas layer and determine the wetlands \& floodplains that are inside or outside PFA <br> - Calculate total area of the Conserved / Protected Land using the ACRES field |
| housing: Dwelling Units | - Classify the Properties layer by DWLL_NUMB field: Use Graduated Colors method, Natural Breaks classification, and $\underline{5}$ classes (If a message box appears asking you to change maximum sample size; click on Classify and then Sampling buttons and increase the maximum sample size number) <br> - Determine records that are inside or outside PFA using the PFA field (ex: PFA = 'Outside PFA') <br> - Calculate total area of each type using the ACRES_1 field |


| HOUSING: <br> Housing Types | Select the records from Properties layer that have Improvement Value larger than to $\$ 0$ and exclude 'Agricultural' and 'Park' land uses [NFMIMPVL > \$0 AND DESCLU <> 'Agricultural' AND DESCEXCL <> 'Parks' AND DESCEXCL <> 'Parks and Recreation'] - Identify residential properties using the DESCLU field <br> * Residential properties consist of: 'Residential', 'Residential Condominium', <br> 'Residential / Commercial', 'Apartments' from the land use categories [DESCLU = <br> 'Residential' or DESCLU = 'Residential Condominium' or DESCLU = 'Residential / <br> Commercial' or DESCLU = 'Apartments'] <br> SFR consists only of the value 'Residential': [DESCLU = 'Residential'] <br> MFR consists of the values 'Residential Condominium', 'Residential / Commercial', and 'Apartments'. [DESCLU = 'Residential Condominium' or DESCLU = 'Residential / Commercial' or DESCLU = 'Apartments'] <br> Determine the records that are inside or outside PFA using the PFA field (ex: PFA = 'Outside PFA') <br> Calculate total area of the records using the ACRES 1 field |
| :---: | :---: |
| HOUSING: <br> Housing Price | Download Census Tracts - 2000 from the census website (http://www.census.gov/ under Maps / Boundary Files / Download Boundary Files) <br> Convert the downloaded interchange file first into a coverage: Open Arc Toolbox; select Import From Interchange File under Conversion Tools / Import to Coverage. Second export this coverage into a shapefile: In the Arc Toolbox, select Export From Interchange File under Conversion Tools / Export from Coverage <br> Download 2000 Census Summary File Three - Median Value (Dollars) for Specified Owner-Occupied Housing Units table: Click on Detailed Tables option, select Census Tract as the geographic level, choose the appropriate State and County, select All Census Tracts and click on Add. Click Next and select Median Value (Dollars) for Specified Owner-Occupied Housing Units table. Export and join this table with the Census Tracts layer <br> Classify the Census Tracts layer by MEDIANVALU field: Use Graduated Colors method, Manual classification, and $\underline{5}$ classes ( $0-100,000-150,000-175,000-M a x i m u m$ Value) |
| HOUSING: Housing Density | Download Census Tracts - 2000 from the census website (http://www.census.gov/ under Maps / Boundary Files / Download Boundary Files) <br> - Convert the downloaded interchange file first into a coverage: Open Arc Toolbox; select Import From Interchange File under Conversion Tools / Import to Coverage. Second export this coverage into a shapefile: In the Arc Toolbox, select Export From Interchange File under Conversion Tools / Export from Coverage <br> - Download 2000 Census Summary File Three - Housing Units table: Click on Detailed Tables option, select Census Tract as the geographic level, choose the appropriate State and County, select All Census Tracts and click on Add. Click Next and select Housing Units table. Export and join this table with the Census Tracts layer <br> Recalculate the Census Tracts' area: <br> - Open the Attribute Table; right click on the AREA field and choose Calculate Values <br> Click on Advance box and type the following VBA statement in the first text box: <br> Dim dblArea as double <br> Dim pArea as IArea <br> Set pArea = [shape] <br> dbIArea $=$ pArea. area <br> - Type the variable dbIArea in the text box directly under the area field name and click OK - Add a new field by clicking on the Options and choosing Add Field on the Attribute Table of the Census Tracts. Name it ACRES and select Double as the type |


|  | - Right click on the ACRES field and choose Calculate Values. Select AREA field and divide that by 43560 (Sq Feet to Acres conversion) <br> - Classify the Census Tracts layer by selecting HOUSINGU field as the value and ACRES field as the Normalization: Use Graduated Colors method, Defined Interval classification, and $\underline{5}$ classes (make sure the break value percentages are equal to: 20, 40, 60, 80, and 100) |
| :---: | :---: |
| ECONOMY: <br> Median Family <br> Income | Download Census Tracts - 2000 from the census website (http://www.census.gov/ under Maps / Boundary Files / Download Boundary Files) <br> - Convert the downloaded interchange file first into a coverage: Open Arc Toolbox; select Import From Interchange File under Conversion Tools / Import to Coverage. Second export this coverage into a shapefile: In the Arc Toolbox, select Export From Interchange File under Conversion Tools / Export from Coverage <br> Download 2000 Census Summary File Three - Median Family Income in 1999 (Dollars) table: Click on Detailed Tables option, select Census Tract as the geographic level, choose the appropriate State and County, select All Census Tracts and click on Add. Click Next and select Median Family Income in 1999 (Dollars) table. Export and join this table with the Census Tracts layer <br> Classify the Census Tracts layer by selecting MEDINC_F field as the value; use Graduated Colors method, Manual classification, and $\underline{5}$ classes ( $45,000-55,000-65,000-$ 75,000-Maximum Value) |
| ECONOMY: <br> Per capita Income | Download Census Tracts - 2000 from the census website (http://www.census.gov/ under Maps / Boundary Files / Download Boundary Files) <br> - Convert the downloaded interchange file first into a coverage: Open Arc Toolbox; select Import From Interchange File under Conversion Tools / Import to Coverage. Second export this coverage into a shapefile: In the Arc Toolbox, select Export From Interchange File under Conversion Tools / Export from Coverage <br> Download 2000 Census Summary File Three - Per Capita Income in 1999 (Dollars) table: Click on Detailed Tables option, select Census Tract as the geographic level, choose the appropriate State and County, select All Census Tracts and click on Add. Click Next and select Per Capita Income in 1999 (Dollars) table. Export and join this table with the Census Tracts layer <br> Classify the Census Tracts layer by PERCAPINC field: Use Graduated Colors method, Manual classification, and $\underline{5}$ classes ( $15,000-20,000-25,000-30,000-M a x i m u m$ Value) |
| ECONOMY: <br> Poverty Rate | Download Census Tracts - 2000 from the census website (http://www.census.gov/ under Maps / Boundary Files / Download Boundary Files) <br> - Convert the downloaded interchange file first into a coverage: Open Arc Toolbox; select Import From Interchange File under Conversion Tools / Import to Coverage. Second export this coverage into a shapefile: In the Arc Toolbox, select Export From Interchange File under Conversion Tools / Export from Coverage <br> Download 2000 Census Summary File Three - Poverty Status in 1999 by Age table: Click on Detailed Tables option, select Census Tract as the geographic level, choose the appropriate State and County, select All Census Tracts and click on Add. Click Next and select Poverty Status in 1999 by Age table. Export this table and divide Income in 1999 Below Poverty Level number with the Total Population to attain Poverty Rate. Join this Poverty Rate field with the Census Tracts layer <br> Classify the Census Tracts layer by POVERTY_AA field: Use Graduated Colors method, Manual classification, and $\underline{5}$ classes (3-5-12.1-18-Maximum Value) |
| TRANSPORTATION: Commute Time | - Download Census Tracts - 2000 from the census website (http://www.census.gov/ under Maps / Boundary Files / Download Boundary Files) <br> - Convert the downloaded interchange file first into a coverage: Open Arc Toolbox; select Import From Interchange File under Conversion Tools / Import to Coverage. |


|  | Second export this coverage into a shapefile: In the Arc Toolbox, select Export From Interchange File under Conversion Tools / Export from Coverage <br> - Download 2000 Census Summary File Three - Mean Travel Time to Work table: Click on Detailed Tables option, select Census Tract as the geographic level, choose the appropriate State and County, select All Census Tracts and click on Add. Click Next and select Mean Travel Time to Work table. Export and join this table with the Census Tracts layer <br> - Classify the Census Tracts layer by MEANTTWORK field: Use Graduated Colors method, Manual classification, and 5 classes (20-25-30-35-Maximum Value) |
| :---: | :---: |
| DEMOGRAPHICS: <br> Population <br> Density | - Download Census Tracts - 2000 from the census website (http://www.census.gov/ under Maps / Boundary Files / Download Boundary Files) <br> - Convert the downloaded interchange file first into a coverage: Open Arc Toolbox; select Import From Interchange File under Conversion Tools / Import to Coverage. Second export this coverage into a shapefile: In the Arc Toolbox, select Export From Interchange File under Conversion Tools / Export from Coverage <br> - Download 2000 Census Summary File Three - Total Population table: Click on Detailed Tables option, select Census Tract as the geographic level, choose the appropriate State and County, select All Census Tracts and click on Add. Click Next and select Total Population table. Export and join this table with the Census Tracts layer <br> - Recalculate the Census Tracts' area: <br> - Open the Attribute Table; right click on the AREA field and choose Calculate Values <br> - Click on Advance box and type the following VBA statement in the first text box: <br> Dim dblArea as double <br> Dim pArea as IArea <br> Set pArea = [shape] <br> dbIArea $=$ pArea. area <br> - Type the variable dbIArea in the text box directly under the area field name and click OK <br> - Add a new field by clicking on the Options and choosing Add Field on the Attribute Table of the Census Tracts. Name it ACRES and select Double as the type. <br> - Right click on the ACRES field and choose Calculate Values. Select AREA field and divide that by 43560 (Sq Feet to Acres conversion) <br> - Classify the Census Tracts layer by selecting POP2000 field as the value and ACRES field as the Normalization: Use Graduated Colors method, Defined Interval classification, and $\underline{5}$ classes (make sure the break value percentages are equal to: $20,40,60,80$, and 100) |
| DEMOGRAPHICS: Households | Download Census Tracts - 2000 from the census website (http://www.census.gov/ under Maps / Boundary Files / Download Boundary Files) <br> - Convert the downloaded interchange file first into a coverage: Open Arc Toolbox; select Import From Interchange File under Conversion Tools / Import to Coverage. Second export this coverage into a shapefile: In the Arc Toolbox, select Export From Interchange File under Conversion Tools / Export from Coverage <br> Download 2000 Census Summary File Three - Total Household Number and Average Household Size of Occupied Housing Units by Owner Occupied table: Click on Detailed Tables option, select Census Tract as the geographic level, choose the appropriate State and County, select All Census Tracts and click on Add. Click Next and select both Total Household Number and Average Household Size of Occupied Housing Units by Owner Occupied table. Export and join these tables with the Census Tracts layer Recalculate the Census Tracts' area: <br> - Open the Attribute Table; right click on the AREA field and choose Calculate Values |


|  | - Click on Advance box and type the following VBA statement in the first text box: <br> Dim dblArea as double <br> Dim pArea as IArea <br> Set pArea = [shape] <br> dbIArea $=$ pArea. area <br> - Type the variable dblArea in the text box directly under the area field name and click OK <br> - Add a new field by clicking on the Options and choosing Add Field on the Attribute Table of the Census Tracts. Name it ACRES and select Double as the type. <br> - Right click on the ACRES field and choose Calculate Values. Select AREA field and divide that by 43560 (Sq Feet to Acres conversion) <br> - For Total Number of Households: Classify the Census Tracts layer by TOTALHH field: Use Graduated Colors method, Defined Interval classification, and $\underline{5}$ classes (make sure the break value percentages are equal to: $20,40,60,80$, and 100) <br> - For Average Household Size: Classify the Census Tracts layer by AVGHHSIZE field: Use Graduated Colors method, Manual classification, and $\underline{5}$ classes (2.25, 2.50, 3.00, 3.50, and Maximum Value) <br> - For Household Density: Classify the Census Tracts layer by selecting TOTALHH field as the value and ACRES field as the Normalization: Use Graduated Colors method, Defined Interval classification, and $\underline{5}$ classes (make sure the break value percentages are equal to: $20,40,60,80$, and 100) |
| :---: | :---: |
| DEMOGRAPHICS: <br> Population <br> Growth | - Download Census Tracts - 1990 from the census website (http://www.census.gov/ under Maps / Boundary Files / Download Boundary Files) <br> - Convert the downloaded interchange file first into a coverage: Open Arc Toolbox; select Import From Interchange File under Conversion Tools / Import to Coverage. Second export this coverage into a shapefile: In the Arc Toolbox, select Export From Interchange File under Conversion Tools / Export from Coverage <br> - Download 2000 Census Summary File Three - Total Population table and 1990 Census Summary Tape File 1 - Total Population table: Click on Detailed Tables option, select Census Tract as the geographic level, choose the appropriate State and County, select All Census Tracts and click on Add. Click Next and select Total Population table. Export and join these tables with the Census Tracts layer <br> - Add a new field by clicking on the Options and choosing Add Field on the Attribute Table of the Census Tracts. Name it POPGROWTH and select Double as the type <br> - Right click on the POPGROWTH field and choose Calculate Values. Subtract POP1990 field from POP2000 field <br> - Classify the Census Tracts layer by selecting POPGROWTH field as the value and POP1990 field as the Normalization: Use Graduated Colors method, Defined Interval classification, and $\underline{7}$ classes (make sure the break value percentages are equal to: $-20,0$, $20,40,60,80$, and 100) |

## APPENDIX C - JavaScript Programming

1. Frame: The website's frame was customized to place OVERVIEW map on the right upper section, to insert INDICATORS section at the bottom, and to make the display of the MAIN MAP larger. The JavaScript used for the frame was:
```
<frameset rows="30,*" frameborder="No" framespacing="0" border=0>
    <frame name="titleFrame" src="title.htm" marginwidth="5" marginheight="0" scrolling="No" frameborder="0" noresize>
    <frameset cols="*,240" frameborder="No" framespacing="0" border=0>
    <frameset rows="*,120">
        <frameset cols="150,*" id="map_toc_frameset">
            <frameset id="title_toolbar_framese=t" rows="20,*,20">
                    <FRAME NAME="titlebarFrame" SRC="titlebar.htm" MARGINWIDTH="0" MARGINHEIGHT="0"
                    SCROLLING="NO" FRAMEBORDER="0" NORESIZE FRAMESPACING="0" BORDER="0">
                    <frame name="toolbarFrame" src="side.htm" marginwidth="0" marginheight="0" scrolling="no" frameborder="0"
                    noresize framespacing="0" border="0">
                        <frame name="indicatorsFrame" src="indicators.htm" marginwidth="0" marginheight="0" scrolling="no"
                    frameborder="0" noresize framespacing="0" border="0">
        </frameset>
            <frameset id="map_scalebar_frameset" rows="*,1" frameborder="Yes" framespacing="0">
                        <frame name="mapFrame" src="map.htm" marginwidth="0" marginheight="0" scrolling="No" frameborder="Yes"
                        resize="YES">
                            <frame name="scalebarFrame" src="side.htm" FRAMEBORDER="No" scrolling="No">
        </frameset>
        </frameset>
            <frameset id="tabmenu_frameset" rows="50,*" frameborder="No" framespacing="0">
                        <FRAME NAME="linksFrame" SRC="links.htm" MARGINWIDTH="0" MARGINHEIGHT="0" SCROLLING="NO"
                        FRAMEBORDER="no" RESIZE="no">
                        <frame name="layersFrame" src="links01.htm" FRAMEBORDER="No" scrolling="AUTO">
        </frameset>
    </frameset>
    <frameset rows="140,*" id="overview toc frameset">
                            <frame name="overviewFrame" src="side.htm" frameborder="Yes" scrolling="No">
                    <frame name="tocFrame" src="side.htm" marginwidth="0" marginheight="0" scrolling="NO" FRAMEBORDER="NO"
                    resize="YES">
    </frameset>
    </frameset>
</frameset>
```

2. Indicators: INDICATORS section was customized to place checkboxes next to each indicator, to insert links, and to insert an 'Update Map' button. The JavaScript used for the INDICATORS was:
```
var visibleLayers = new Array()
visibleLayers[0] ="Current Use";
visibleLayers[1] ="Commercial,Industrial&Public Uses";
visibleLayers[2] ="Residential";
visibleLayers[3] ="Commercial,Industrial&Public Uses";
visibleLayers[4] ="Residential";
function updateLayers(form){
    var visibleLayer;
    var tocValue = parent.mapFrame.IMSMap.getToc();
    for(var n=0; n<visibleLayers.length; n++){
            f(!(visibleLayers[n] == "none")){
                visibleLayer = parent.mapFrame.document.IMSMap.getSubLayer ('Harford',
                                if(form.LayerVisible[n].checked){
                                visibleLayer.setVisibleByInt (1);
                                }else{
                                if (n!=4&&n!=3){
                                    visibleLayer.setVisibleBylnt (0)
                                }
}
}
```

visibleLayers[n]);

```
                    }
                    parent.mapFrame.IMSMap.redraw();
                    parent.tocFrame.IMSToc.refresh();
    }
</HEAD>
<BODY bgcolor="FFFFFF" TEXT="Black" LEFTMARGIN=5 RIGHTMARGIN=0 LINK="336699" VLINK="336699" ALINK="336699"
TOPMARGIN=5 onload="startUp()">
<TABLE WIDTH="577" HEIGHT="40" CELLSPACING="0" CELLPADDING="1" BGCOLOR="FFFFFF">
    <FORM NAME="linksForm">
    <TR>
        <TD WIDTH="1" HEIGHT="21">&nbsp; </TD>
        <TD WIDTH="22">
            <input type="Checkbox" name="LayerVisible" value="0">
        </TD>
        <TD WIDTH="250"><FONT FACE="Arial" SIZE="-2"><A HREF="ArcIMSLinks072204\CurrentUse.htm"
target="_blank">Current
            Use</A></FONT></TD>
    <TD WIDTH="22">
        <input type="Checkbox" name="LayerVisible" value="1">
        </TD>
        <TD WIDTH="306"><font face="Arial" size="-2"><a href="ArcIMSLinks072204\EmpDensity.htm" target="_blank">Employment
            Density</a></font></TD>
        </TR>
    <TR>
        <TD HEIGHT="21">&nbsp; </TD>
        <TD>
            <input type="Checkbox" name="LayerVisible" value="2">
        </TD>
        <TD><FONT FACE="Arial" SIZE="-2"><A HREF="ArcIMSLinks072204\ResDensity.htm" target="_blank">Residential
            Density</A></FONT></TD>
        <TD>
            <input type="Checkbox" name="LayerVisible" value="3">
        </TD>
        <TD><font face="Arial" size="-2"><a href="ArcIMSLinks072204ILandUseMix.htm" target="_blank">Land
            Use Mix</a></font></TD>
    </TR>
    <TR>
        <TD HEIGHT="21">&nbsp; </TD>
        <TD>
        <input type="Checkbox" name="LayerVisible" value="4">
        </TD>
        <TD valign="center"><font face="Arial" size="-2"><a href="ArcIMSLinks072204\ResLotSize.htm"
target="_blank">Residential(SFR,
            MFR) Lot Size</a></font></TD>
        <TD></TD>
        <TD></TD>
    </TR>
```


## APPENDIX D - Instructions for Navigation and Drawing Tools

## NAVI GATI ON TOOLS

Navigation Tools allow you to: a) navigate (Zoom, Pan) on the MAIN MAP, b) conduct GIS analysis (Query, Buffer, Measure), and c) get information about the layers (Identify, Show Select).

Zoom In tool allows you to a) zoom into an area you define by holding down the left mouse button and dragging a box on the map or from a point on the map where you click and b) re-center the MAIN MAP display by the area you defined
Zoom Out tool allows you to a) zoom out from an area you define by holding down the left mouse button and dragging a box on the map or from a point on the map where you click and b) re-center the MAIN MAP display by the area you defined

Entire Map tool allows you to fully view the MAIN MAP by zooming out to the full extent of the layers

Zoom to Active tool allows you to fully view the data layer that is made active* in the LEGEND menu

Previous Zoom tool allows you to go back to the previous MAIN MAP display
Pan tool allows you to drag the display in any direction with the mouse; to pan, move the cursor anywhere over the MAIN MAP, hold down the left mouse button, and drag in any direction; release the mouse button to leave the display in a desired position
I dentify tool allows you to view the information on any feature shown on the MAIN MAP; note: the Identify tool works only one layer at a time and that layer has to be active*; in order to accurately select the feature of your interest, you might have to zoom in to a larger scale

Query tool allows you to construct query statements and further analyze any of the layers from the LEGEND; note: see 'How To Do Your Own Search Using Query Tool' section for detailed explanation

Measure tool allows you to measure distances based on your clicks on selected points on the MAIN MAP; to measure, move the cursor anywhere over the MAIN MAP, click on a point, hold down the mouse button, drag to any location and release the mouse button; results are displayed in the top section of the MAIN MAP; measurement units are in miles; note: to clear the measured segments double click anywhere on the MAIN MAP

Buffer tool allows you to buffer the selected features from the active* layer based on your choice of distance and lets you select features from any other layer that are within the buffer

Select tool allows you to select features from the active* layer by clicking on the features of interest or by defining a box that captures those features
Show Select tool allows you to view the information about the selected features
Clear Select tool allows you to clear the selected features
Print tool allows you to print the main map

[^0]
## How to Do Your Own Search Using Query Tool

1. Select the layer you want to analyze from the LEGEND on the right side of the screen by clicking on the layer name (i.e. Properties, Municipalities etc.); the layer name in the LEGEND should look raised
2. Click on the Query button from the NAVIGATION TOOLS menu on the left side of the screen
3. Select the Field (attribute) you want to analyze by scrolling down and double clicking on the field name (i.e. DESCLU); note: see definitions for more information on Fields
4. Click on the Operator Sign (i.e. ' $=$ ', ' $>=$ ', etc.) depending on which operation you need to perform
5. Click on one of the Values associated with the Field you have chosen (i.e. 'Commercial')
6. The final dialogue box should contain information similar to: (DESCLU = 'Commercial')
a. To query more than one value within one or more layers click on either 'OR' or 'AND'
i. 'OR': Any of the conditions can be true for a selection to take place
ii. 'AND': All conditions must be true for a selection to take place
b. Repeat the same steps from \# 3
c. The final dialogue box should look similar to: (DESCLU = 'Commercial’ or DESCLU = 'Agricultural')
7. Click on the Execute button
8. The result of the query will be displayed in the Query Results Table and highlighted in yellow in the MAIN MAP
a. To view all Fields (attributes) of the layer in the Query Results Table click on Show All Attributes button
b. To view only one Field of the layer in the Query Results Table select the Field (attribute) from Display Field
c. To select one or more records from the Query Results Table click on the records by holding 'ctrl' or 'shift'
d. To highlight the selected records click on the Highlight button; to center the selected results click on the Pan button; to zoom to the selected results click on the Zoom button
9. Click on the Statistics button for statistical calculations (i.e. mean, sum, etc.); selecting a Field for which you want to get statistics calculated
a. Check the Use Query Results to get only the statistics of the resulting query
b. Uncheck the Use Query Results to get the statistics on all features in the layer that was selected in the step \#1
10. To save the results click on the Save button
11. To create a new query click on the Clear button.

## DRAWING TOOLS

Drawing Tools allow you to add text and/or graphics to the MAIN MAP and to store them as a data layer.

New Layer tool allows you to create a new layer; this is a necessary step when you start a new layer

Select Layer tool allows you to select previously created and saved layers
Delete Layer tool allows you to delete a layer; first select the layer you want to delete, then click on the Delete Layer tool

Description tool allows you to write information about the layer you created; after you create a new layer or select a previously created layer, click on description tool to write information about the layer

Submit tool allows you to save the layer you created and to save the changes you make by drawing or adding text to a previously created layer

Stop tool allows you to stop the drawing session and to clear the text or graphics from the MAIN MAP; when you activate the Drawing Tools menu tab, the information you submitted (saved) before will show up on the MAIN MAP again

Undo tool allows you to undo the immediately preceding action
Redo tool allows you to redo the immediately preceding action
Select tool allows you to select the text and graphics you created
Add Line tool allows you to draw a line by holding the left mouse button from the point where you want to begin your line to the point representing the end of your line; press the mouse button twice to end the drawing

Add Polygon tool allows you to draw a polygon by holding the left mouse button from the point where you want to begin your polygon, move to the next point where you release the mouse button; repeat the action until you come to the end point of your polygon and press the mouse button twice to end the drawing

Add Rectangle tool allows you to draw a rectangle by holding the left mouse button from the point representing one corner of your rectangle to the point representing the end point of your rectangle - opposite from the beginning point; release the mouse button to end the drawing

Add Circle tool allows you to draw a circle by holding down the mouse button from a point representing the center of your circle to a point representing the perimeter of your circle; release the mouse button to end the drawing

Add Text tool allows you to write text in the MAIN MAP; write down the text and change it to the font type and size on your preference; click on the MAIN MAP where you want the text to be displayed

Add Image tool allows you to insert an image in to the MAIN MAP by allowing you to search and select an image from your computer and then by clicking on a point where you want the image to be displayed

Add Freehand tool allows you to draw freehand by holding the left mouse button from the point you want to begin your drawing to the point representing the end of your freehand drawing; double click to end the drawing

Delete tool allows you to delete the text or graphics you created; to delete you first have to select the text or graphics you want to delete

## REFERENCES

Banerjee, T. 1996. The Role of Indicators in Monitoring Growing Urban Regions: The Case of Planning India's National Capital Region. Journal of the American Planning Association 62(2): 222-235.

Bollens, S.A. and Godschalk, D.R. 1987. Tracking Land Supply for Growth Management. Journal of the American Planning Association 53(3): 315-327.

Brower D., Godschalk D., and Porter D. 1991. Understanding Growth Management Critical Issues and a Research Agenda. Washington, D.C.: The Urban Land Institute.

Dragicevic, S., 2004. The Potential of Web-Based GIS. Journal of Geographical Systems 6: 79-81.

Kingston, R., Carver, S., Evans, A., and Turton, I. 2000. Web-Based Public Participation Geographical Information Systems: An Aid to Local Environmental Decision-Making. Computers, Environment and Urban Systems 24: 109-125.

Knaap, G., 2001. Land Market Monitoring for Smart Urban Growth. Cambridge, MA: Lincoln Institute of Land Policy.

Knaap, G., Nedovic-Budic, Z. 2003. Assessment of Regional GIS Capacity for Land Use and Transportation Planning. Project report. Champaign: University of Illinois, Department of Urban and Regional Planning; College Park, MD: National Center for Smart Growth Research and Education. http://www.urban.uiuc.edu/faculty/budic/WMetroGIS.htm

Moudon, A. 2000. Monitoring Land Supply with Geographic Information Systems: Theory, Practice, and Parcel-Based Approaches. New York: John Wiley \& Sons.

Peng, Z.R. 2001. Internet GIS for Public Participation. Environment and Planning B: Planning and Design 28: 889-905.

Porter, D. 1997. Managing Growth in America's Communities. Washington D.C.: Island Press.

Randall, C. and Daniere, A. 1996. Measuring Access to Basic Services in Global Cities, Journal of the American Planning Association 62(2): 203-221.
U.S. Census Bureau, www.census.gov

Ecological footprint: http://www.infoforhealth.org/pr/m16/m16chap4.shtml

## AUTHOR INFORMATION

Zorica Nedovic-Budic, PhD, Associate Professor
University of Illinois at Urbana-Champaign
Department of Urban and Regional Planning
611 Taft Drive, Temple Buell Hall
Champaign, IL 61820
Tel: 217-244-5402
Fax: 217-244-1717
E-mail: budic@uiuc.edu
Tolga T. Yilmaz, GIS Specialist
Illinois State Water Survey
2204 Griffith Drive
Champaign, IL 61820
Tel: 217-244-5459
Fax: 217-333-4983
E-mail: tyilmaz@uiuc.edu
Gerrit-Jan Knaap, Professor and Director
National Center for Smart Growth Research and Education
Urban Studies and Planning Program
University of Maryland at College Park
1112M Preinkert Field House \#054
College Park, MD 20742
Tel: 301-405-6083
E-mail: gknaap@ursp.umd.edu


[^0]:    * ACTIVE - See LEGEND section for instructions on how to select a layer and make it active

