2006 ESRI International User Conference

Migrating Germany’s third largest energy company

Dipl.-Ing. Oliver Müller-Bertram (EnBW), Dipl.-Ing. (FH) Peter Grüninger (BARAL)

9. August 2006
Migrating Germany’s third largest energy company

Content

› Who is the EnBW AG

› Starting points

› Target system & aims

› Tools & strategies

› Conclusion
Who is the EnBW AG?

› Key markets and regions

1 EnAlpin = EnAlpin AG
ED = Energiedienst AG
KRS = Kraftwerk Ryburg-Schwörstadt AG
EVN = Energieversorgung Niederösterreich Aktiengesellschaft

Key markets/regions

› remain strong position in Baden-Württemberg*

› Increase of market shares in Germany* e.g. in regions with existing shareholdings such as Düsseldorf (SWD) and Dresden (GESO/ENSO)

› Further development of position in selective attractive European regions especially in Central and Eastern Europe

* Due to anti-trust legislation in Germany EnBW is unlikely to gain further market shares in Baden-Württemberg, but has a favourable position in the rest of Germany
Who is the EnBW AG?

› Facts about EnBW

<table>
<thead>
<tr>
<th>Generation mix* - key data EnBW 2005</th>
</tr>
</thead>
<tbody>
<tr>
<td>Run-of-river/storage hydropower stations 23%</td>
</tr>
<tr>
<td>Conventional power stations 42%</td>
</tr>
<tr>
<td>Nuclear power stations (incl. EDF contracts) 35%</td>
</tr>
<tr>
<td>Other renewable energies >1%</td>
</tr>
</tbody>
</table>

*Capacity of 14,366 MW

Electricity – key data EnBW 2005*

› Sales volume: 106,7 TWh
› External sales: EUR 8,150m
› Generation: 73,6 TWh
› Grid:
 › Very high voltage: 3,609 km
 › High voltage: 9,802 km
 › Medium voltage: 43,931 km
 › Low voltage: 95,131 km

Gas – Key data EnBW 2005**

› Sales volume: 88,6 TWh
› External sales: EUR 2,102m

* sales from electricity trading are reported net of cost of materials for the first time (net disclosure)
Starting points

› SICAD AKOSIC VL
 › based on SICAD/open on UNIX
 › alpha-data is stored in so called “descriptors” attached to each graphic-element
 › generalization tools / plans

› SICAD UT 3.2
 › based on SICAD/open on UNIX
 › separate alpha-data-model
 › forerunner of ArcFM UT
Starting points

› Microstation
 › CAD-system
 › external database with alpha-data

› sisNET
 › based on Microstation
 › GIS for electricity and gas
 › well adapted for the requirements of EnBW

› AutoCAD
 › CAD-System
 › Electricity for small areas
 › Data-view in the information-system of EnBW
Starting points

Data

• Alpha-data
 • separate alpha-data only application
 • mostly middle-voltage

• Vector-data
 • varying on source system
 • from simple graphic to complex GIS-objects

• Raster-data
 • about 50000 scanned operation plans
 • about 3 TB aerial views
 • stored in SICAD-internal file-format and tif-files
Target system & Aims

Target System ArcFM™ UT

› Integrated multi-utility solution
 › electricity, gas, water, sewage, telco

› Ready-to-use, fully customizable solution with extremely short implementation duration

› Extensive functionality covering network documentation, outage management, maintenance, customer information and planning

› Efficient support of the initial collection, update, analysis and presentation of spatial and technical information

› Based on strong data models and databases, transaction protected

› Uniform handling of common objects across utility branches

› Interoperability with ERP and other business and technical systems
Target system & Aims

Aims

› consort data to the target data model

› integrated data
 › unique alpha-object with multiple graphic representations

› lossless migration
 › “not migratable” data is stored in special feature-classes

› calculated topology (“geometric network”)

ArcF

UT-α

SICA

FM

D

sisNet

α

G1 G2 G3
Tools & Strategies

› Feature Manipulation Engine (FME)
 › module based tool
 › reader an writer concept
 › flexible, efficient

› SQL
 › SDE based on Oracle
 › "set_current_version" method to access multi-versioned-data
 › fast standard tool
Tools & Strategies

› Integration
 › find identical alpha-objects
 › join them to one unique object

› Quality assurance
 › cascading test-runs finished by “dress rehearsal”
 › statistics
 › spot tests
Conclusion

› Main traps

› dependencies inhomogeneous to other subproject source-data

› precise analyze of source data

› clear defined milestones

› strong statistics

› well coordinated main project-plan

› stable CR process

› stable CR process
Conclusion

› Expected runtime
 › migrating data with FME
 › integration
 › building geometric network
 › → very large range, depending on source-data

› Expected data volume
 › alpha-data
 › vector/alpha-data
 › raster-data
Questions

Oliver Müller-Bertram
EnBW AG
Stuttgart / Germany
o.mueller-bertram@enbw.com

Peter Grüninger
BARAL Geohaus-Consulting AG
Reutlingen / Germany
peter.grueninger@baral.de