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ABSTRACT 

Remote detection of submerged plants is often limited due to the water absorption of Near Infrared (NIR) 

and the light scattering from suspended particles. Spectral variations along depth gradients were collected 

using a GER 1500 spectroradiometer over outdoor tanks that contain submerged plants.  Field transect-

surveys were also conducted in Grand Bay National Estuarine Research Reserve, Mississppi, to collect 

information on water depth and vegetation cover along depth gradients. The transect data were overlaid 

with airborne hyperspectral image in ArcGIS 9.2. Experimental study results indicated that the NIR 

region appears to have two peaks at approximately 710-720 nm and 810-820 nm in the submerged plants.  

Incorporation of these unique NIR reflectance peaks did not significantly improve detection of seagrass 

beds in turbid, high energy coastal waters, but, it appears to improve the use of hyperspectral aerial data 

in locating seagrass beds.  

 

INTRODUCTION 

Submerged aquatic vegetation (SAV) communities are an essential component in coastal and estuarine 

ecosystems.  SAV beds play important role in reducing wave energy, enhancing sedimentation, stabilizing 

sediment, and supplying fisheries habitat, and serving as food sources for wildlife.  Coastal SAV also 

improves water clarity by removing excessive nitrogen and phosphorus from water column and compete 

with algae.  Therefore, studies of SAV distribution and abundance have become one of the interests of 

coastal scientists. 

 Remote sensing data have been used in studies of SAV and seagrasses distribution and 

abundance as s supplement or substitute of field surveys.  Unlike remote sensing of terrestrial vegetation, 

the upwelling radiation from SAV has to cross the water column, which makes more complicated to 

process and interpret the data.  

Chlorophyll a and b in green vegetation absorbs the most part of the energy in the visible 

wavelengths for photosynthesis; and healthy terrestrial vegetation is featured with a high reflectance in 

the near-infrared (NIR) region due to the spongy mesophyll structure.  Spectral indices for vegetation, 

including Normalized Difference Vegetation Index (NDVI), have been created by utilizing these 
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characteristics of vegetation reflectance.  However, the application of NDVI to SAV has been difficult 

due to the water absorption of NIR and reflection caused by varying water column constitutes.  We used 

an experimental approach to understand the SAV’s spectral reflectance pattern; compared them with field 

measured reflectance; identified the unique spectral regions for SAV that would improve detection and 

classification of seagrass beds using aerial hyperspectral data. 

  

METHODS 

Experimental setting 

To obtain the spectral responses of SAV at varying water depths, a hand-held GER 1500 

spectroratiomater was used to measure downwelling and upwelling energy from an outdoor tank that 

contain SAV (Myriophlyllum aquaticum) (Fig. 1).  The experiments were conducted on clear days at near 

solar noon to minimize variability of solar elevation.  The inside of the tank was lined with black plastic 

pond liners to minimize noise reflectance from the interior surface.  The plants were planted at a density 

similar to the mean natural density during local growing season.  The SAV tank was filled with clear 

water (local tap water) up to the depth of 50cm.  The spectral measurements were made continuously as 

the tank water was siphoned out.   

The spectral data were used for the computation of percent reflectance where Reflectance (%) = 

(Upwelling Radiance) / (Downwelling Irradiance) * 100 (Fig.2).  Reflectance values were calculated only 

between 400-900 nm to eliminate low signal-to-noise data.  Detailed characteristic reflectance curves for 

SAV at different water depths above the SAV canopy at different water turbidity of SAV were generated.  

The resulting data contained 315 bands within a range from 401 to 900 nm.   

 

Figure 1. An experimental aquatic plant tank 
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Figure 2. Spectral reflectance patterns of the SAV planted bottom of the experimental tank  

Field measurements of spectral data  

Grand Bay National Estuarine Research Reserve (GBNERR) is located in southeast Mississippi (30.41° 

N; 88.53° W) (Fig.3).  Spectral measurements were measured using the GER 1500 unit at 38 sites along 

four transects (Fig.4) that ran across Middle Bay in GBNERR on March 13th, 2007.  At each site, water 

depth was measured using a wooden stick marked in one-foot increments; geographic coordinates were 

recorded using a GARMIN etrex handheld GPS; vegetation status including presence/absence and species 

was recorded; and upwelling energy was measured using a GER 1500 spectroradiometer.  Sampling site 

number, latitude, longitude, turbidity value, water depth, vegetation species, and file number for spectral 

data were measured at each site; the data were saved in MS Excel (Fig.5) and added into ArcMap 9.2; and 

then point features were created from this file.  The GER spectral reflectance data associated with the site 

numbers were saved in a separate file and imported into ArcMap (Fig. 6) 

 

Figure 3. Map of Grand Bay National Estuarine Research Reserve, 

Mississippi, showing the locations of Middle Bay and seagrass beds. 
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Figure 4. Spectral data sampling points in Middle Bay, Grand Bay NERR. 

 

 
Figure 5. Data format of sampling site number, latitude, longitude, turbidity value, water depth, 

vegetation type, and file number for spectral data measured at each site 

 

 

 

 

 

Figure 6. A sample of dataset of the 

spectral reflectance collected at the 

sampling sites in Middle Bay. 
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Airborne AISA hyperspectral acquisition 

Aerial hyperspectral data were obtained in October 2003 

over Grand Bay NERR (Fig.7).  The data were obtained 

by AISA Eagle hyperspectral sensor by University of 

Nebraska at Lincoln’s Center for Advanced Lane 

Management Information Technologies (CALMIT); and 

the data were available through CALMIT after pre-

processed for atmospheric and geographic corrections.  

The Grand Bay NERR data had 20 hyperspectral bands 

within a range from 435 to 950 nm.   

 

 

Figure 7. Flight lines of AISA Eagle hyperspectral data 

acquisition in October 2003 over Middle Bay, Grand 

Bay NERR. 

 

 

Identification of critical wave bands 

In order to reduce the redundancy and volume of the data, the following key spectral wavelengths (bands) 

were selected for SAV using experimental tank reflectance data (Table 1; Fig. 8).   

 

Table 1. The key spectral wavelength ranges for unique SAV reflectance features. 

GREEN Green reflectance by plants 540 – 560 nm 
RED Red absorption regions by chlorophyll 670 – 690 nm 
NIR1 The first peak in the near infrared 710 – 730 nm 
NIR2 The dip in the Near Infrared 735 – 745 nm 
NIR3 The second NIR peak 810 – 820 nm 
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Figure 8.  Spectral reflectance of SAV measured in the outdoor tank at varying depths.  The selected 

wavelengths for SAV classification are indicated. 

 

The field measured GER spectral reflectance (ground-truth data) and the AISA data at the selected 

wavelengths were extracted at the sampling sites (Fig. 4).  Due to the time lag between the aerial data 

acquisition (October 2003) and the ground-truth measurements (March 2007) and the discrepancies in 

spectral resolutions between them, the direct comparison of spectral reflectance patterns did not provide 

meaningful results.  Instead, the relationships among the key spectral wavelengths (Table 1) at varying 

depths were studied in order to find the AISA bands that can be used for SAV classification. 

Supervised classification 

Spectral Angle Mapping (SAM) was used to classify the AISA data.  SAM is a classification technique 

based on the idea that observed reflectance spectrum can be considered as a vector in a multidimensional 

space where the number of dimensions equals the number of spectral bands (Lillesand, 2008).  As 

described above, the experimental tank spectral data, field measured data, and AISA data were examined 

together by ratioing two pairs of the five key wavelengths (Table 1; Figure 8) to select three wavelength 

regions that appear to hold similar relationships among them.  Only the three AISA bands whose centers 

are closest to the three wavelength regions (561nm, 710nm, and 819 nm) were used in SAM.   

 Bay-wide water depth data were downloaded from the National Geophysical Data Center website 

and converted to meters.   Point features were created in ArcGIS using the data; and then interpolated 

using the Kriging method (the linear semivariogram model, using variable search radius) within the 

Spatial Analyst (Fig. 9).  Along with the water depth data, previous surveyed seagrass transect data were 

used to select the ROI (endmembers) within the imagery. 



Cho et al. 2008   7

   

 

Fig. 9. Sampling sites for GER spectral data and seagrass 

bed location are overlaid with interpolated grid of water 

depth in Middle Bay. 

 

 

 

 

 

 

 

Regions of Interests (ROIs) were selected as polygons to represent unvegetated deep water, shallow water 

SAV, marsh, and bare sand.  The three AISA bands (561nm, 710nm, and 819 nm) were used to create an 

ENVI file in ENVI 4.1, then the three-band ENVI file was used for a supervised classification using 

SAM.  The classified image was imported into ArcGIS and re-projected into UTM zone 16 (datum WGS 

84) to be overlaid with spectral data and SAV survey data. 

RESULTS and DISCUSSION 

Selection of critical AISA bands for SAV detection 

The direct comparison of experimental tank reflectance data, ground-truth field reflectance data, and air-

borne AISA data were not possible, but all the datasets hold the truth that there are small peaks near 710-

720 nm and 810-820nm and there is a reflectance dip in between those two wavelengths at around 740 nm 

(Fig 8 and Fig. 10).    

      

 

Figure 10. Spectral profile over an SAV bed captured by AISA imager. 
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Therefore, the NIR bands (centered at 710 nm and 819 nm) of AISA data were used to test if the visual 

distinction of vegetation signal from water would be improved (Fig. 11).  Compared to the original image 

that contains all 20 bands (Fig.7), use of the NIR bands made the area that contain cholorophylls, both 

SAV (seagrass) beds and areas with high phytoplankton, more distinguishable (Fig. 11).  

 
 

Figure 11. Shallow water SAV beds appear as purple.   

 

SAM Classification 

Fig. 12 shows the SAV classification of the AISA data.  Although the shallow areas near the shore are 

correctly classified as SAV, the overall accuracy for class SAV was less than 20% when compared with 

our field transect SAV distribution data that we have been surveying every July and October since 2005.  

The transect SAV distribution and species composition can be found in Cho et al. (2007; 

http://gis.esri.com/library/userconf/proc07/papers/papers/pap_1043.pdf).  The possible explanations for 

the low accuracy for SAV in Middle Bay are varying depth, high suspended particles that diminish 

signals from the substrates.  The spectral signals from suspended phytoplankton that are similar to those 

of vascular plants probably introduced sources for the misclassifications. 
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 Figure 12. Result of SAM classification. 

 

FURTHER STUDY  

Aerial hyperspectral data were obtained in September 2006 over Apalachicola Bay.  As opposed to the 

Grand Bay NERR data that had 20 hyperspectral bands, the Apalachicola data had 97 hyperspectral bands 

within a range from 435 to 950 nm.  We used the same three AISA bands (561nm, 710nm, and 819 nm) 

to classify the data into 50 classes (Fig. 13).  Although we have not done extensive GIS analyses on the 

preliminary data due to the lack of ground-truth data, the three band combination brought out even the 

deeper water vegetation in this relatively clear environment. 

Therefore, we concluded that the incorporation of these unique SAV-NIR reflectance peaks did 

not significantly improve detection of seagrass beds in turbid, high energy coastal waters, but, it appears 

to improve the use of hyperspectral aerial data in locating seagrass beds. 
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