

Income Indicators based on Electricity Consumption:

A Geostatistical Approach

Eduardo Francisco eduardo francisco@aes.com

Francisco Aranha francisco.aranha@fgv.br

Felipe Zambaldi zambaldi@yahoo.com

Rafael Goldszmidt rafael.goldszmidt@fgv.br

Peter Whigham PWhigham@infoscience.otago.ac.nz

Antoni Moore AMcore@infoscience.otago.ac.nz

2008 ESRI International User Conference

San Diego, CA, USA - August 5th 2008

INTRO

METHODS

RESULTS

CONCLUSION

Income and Electricity Consumption

Income

- Indicator usually adopted in studies of Poverty, Living Conditions, Finance and Marketing
 - Estimates purchasing power of urban people and families

Difficulty in the collection of this information:

- Wide-ranging and high coverage (very expensive)
 - Depends on Demographic Census or large surveys to be representative of census tracts, census sectors or meshblocks (areas with 100 to 400 households)

Census cycle: Quinquennial / Last: 2006

Census cycle: Decennial / Last: 2000

Income

- Indicator usually adopted in studies of Poverty, Living Conditions, Finance and Marketing
 - Estimates purchasing power of urban people and families

Difficulty in the collection of this information:

- Wide-ranging and high coverage (very expensive)
 - Depends on Demographic Census or large surveys to be representative of census tracts, census sectors or meshblocks (areas with 100 to 400 households)
- Accurate data on Income is difficult for some low income (and low educational level) population
 - Altered declaration, seasonal changes, refusal etc.
 - Social and Economic Classification or Purchasing Power based on indicators – e.g., ownership of goods – Needs constant update

Goods	Number of goods				
	0	1	2	3	4 or more
Television	0	2	3	4	5
Radio	0	1	2	3	4
Bathroom	0	2	3	4	4
Automobile	0	2	4	5	5
Domestic Employee	0	2	4	4	4
Vacuum Cleaner	0	1	1	1	1
Washing Machine	0	1	1	- 1	1
Videocassette and/or DVD	0	2	2	2	2
Refrigerator or Freezer	0	2	2	2	2
Freezer (independent machine)	0	1	1	1	1

Brazilian Criterion (1996)

Economic Class	Points		
A1	30-34		
A2	25-29		
B1	21-24		
B2	17-20		
C	11-16		
D	6-10		
E	0-5		

INTRO

METHODS

RESULTS

Income

- Indicator usually adopted in studies of Poverty, Living Conditions, Finance and Marketing
 - Estimates purchasing power of urban people and families
- Difficulty in the collection of this information:
- Wide-ranging and high coverage (very expensive)
 - Depends on Demographic Census or large surveys to be representative of census tracts, census sectors or meshblocks (areas with 100 to 400 households)
- Accurate data on Income is difficult for some low income (and low educational level) population
 - Altered declaration, seasonal changes, refusal etc.
 - Social and Economic Classification or Purchasing Power based on indicators – e.g., ownership of goods – Needs constant update

Consumption of Electric Energy can be a good indicator to better assist process of characterize customers

- · Easy to get Monthly Collected
- Essential Utility, Wide-ranging and Coverage
- Could be published in aggregate areas (census sectors, districts, municipalities)

INTRO

METHOOS

RESULTS

OBJ: Analyze the relationship between Residential Electricity Consumption and Household Income

Create an Income indicator based on Electricity consumption

Income-predicting (regression) models:

Object: City of São Paulo, Brazil

(more than 10 million inhabitants)

Data:

Brazilian Demographic Census 2000 +
Customers Database of AES Eletropaulo
(São Paulo's Power Distribution company) (full access)
Aggregate in weighted census areas (polygons)

OBJ: Analyze the relationship between Residential Electricity Consumption and Household Income

Create an Income indicator based on Electricity consumption

Income-predicting (regression) models:

Object: City of São Paulo, Brazil

(more than 10 million inhabitants)

Data:

Brazilian Demographic Census 2000 +
Customers Database of AES Eletropaulo
(São Paulo's Power Distribution company) (full access)
Aggregate in weighted census areas (polygons)

OBJ: Analyze the relationship between Residential Electricity Consumption and Household Income

Create an Income indicator based on Electricity consumption

Income-predicting (regression) models:

Traditional Linear Regression:

$$\hat{y} = \beta_0 + \beta_1 x + \varepsilon$$

SAR (Spatial Auto-Regression):

$$\hat{y} = \beta_0 + \beta_1 x + \rho \widehat{W} y + \varepsilon$$

Neighbourhood Matrix *

(based on k nearest neighbours)

GWR (Geographically Weighted Regression):

$$\hat{y}_i = \beta_0(u_i, v_i) + \beta_1(u_i, v_i) x_i$$

Different regressions for each weighted census areas ($m{i}$) considering a local sample based on $m{k}$ nearest neighbours

GWR: Different $oldsymbol{eta}$ parameters and

different local R2 for each i

(and for each local sample size $m{k}$)

INTRO

METHOOS

RESULTS

Results of Predictive Models

Traditional Linear Regression

$$R^2 = 86.80\%$$

$$\hat{y} = -3,034.71 + 19.55 \cdot x$$

SAR Model (Spatial Auto-Regression)

$$R^2 = 94.48\%$$

$$\hat{y} = -2,303.64 + 12.73 \cdot x + 0.499 W y$$

GWR Model (Geographic Weighted Regression)

$$R^2 = 96,80\%$$

Results of Predictive Models

Traditional Linear Regression

 $R^2 = 86.80\%$

 $\hat{y} = -3,034.71 + 19.55 \cdot x$

SAR Model (Spatial Auto-Regression)

 $R^2 = 94.48\%$

 $\hat{y} = -2,303.64 + 12.73 \cdot x + 0.499 W y$

GWR Model (Geographic Weighted Regression)

 $R^2 = 96,80\%$

Obs: k = 9 in Spatial Statistics models

Eletropaulo OTAGO OTAGO SIRC

Not Significant
High-High
Low-Low
Low-High

SAR: Neighbourhood Graphs

- For different neighborhood matrix, Energy Moran's I showed high values (0.77+)
- It suggests high influence of neighborhood in Household Income behavior
- LISA maps: Increase of income concentration in direction Suburbs-Centre.
 The same for Electricity consumption

Data set

SAR: Absence of Spatial Dependence in Residuals

Spatial Auto-regressive Model

Spatial Weight : areaqueen1.GAL (Queen Graph)

Dependent Variable : LNINCOME Number of Observations: 456

Mean dependent var : 7.46738 Number of Variables : 3

S.D. dependent var : 0.633242 Degrees of Freedom : 453

Lag coeff. (Rho) : 0.607507

: electric energy

 R-squared
 : 0.94484
 Log likelihood
 : 171.909

 Sq. Correlation
 : Akaike info criterion
 : -337.818

 Sigma-square
 : 0.0253932
 Schwarz criterion
 : -325.451

S.E of regression : 0.159352

INTRO METHODS

RESULTS

- Use of Neperian Logarithms of dependent and independent variables
- Residual error of this model assumed normal distribution pattern and homoskedasticity - Absence of spatial dependence in residuals

Escola de Administração de Empresas de São Paulo

INTRO

METHODS

RESULTS

CONCLUSION

GWR: Distribution of β_0 and β_1 parameters (varying k)

Distribution of global R2 (GWR and SAR models)

Tools

- ArcGIS 9.2 and ArcView GIS 3.1
 - Exploratory analysis, Spatial Join and Summaries
- ArcGIS Spatial Analyst & Geostatistical Analyst
 - Exploratory analysis
- R 2.6.1 Statistical Tool
 - SPDEP package: Moran's I and SAR models
 - SPGWR package: GWR models (including AIC optimization)
- GeoDA 0.95i
 - LISA Maps, SAR models
- GWR3X
 - GWR models
- Next Steps:
 - Promote comparative studies
 (Latin America, USA/North America, Europe, Asia, Australia/NZ)
 - Evaluate temporal perspective and Household Level
 - Explore GWR and Moran's I in ArcGIS 9.3 !!!

Escola de Administração de Empresas de São Paulo

INTRO

METHODS

RESULTS

CONCLUSION

Conclusions

 Use of the mean household electricity consumption, at a territorial aggregated level, is an excellent regional indicator of income concentration in the city of São Paulo

Managerial Implications — A Potential New Business

Income indicators based on Electric Energy consumption

- Should be published widely by power distribution companies, Energy commissions or agencies
- Useful for strategy formulation and decision making
 - Household classification, Concentration analysis, Prediction, clustering

Social-Economical Variables & Energy Losses (Fraud)

Income Indicators based on Electricity Consumption: A Geostatistical Approach

Eduardo de Rezende Francisco

eduardo.francisco@aes.com

2008 ESRI International User Conference

San Diego, CA, USA - August 5th 2008