Is strategic DATA stuck in my PIPELINE?

By: Michael Harris

2008 ESRI International User Conference
San Diego, California
6 August 08

Philosophy...?

- "Insanity Doing the same things over and over again and expecting different results." – Albert Einstein
- "If you don't know where you are going, any road will take you there." – Lewis Carroll
- To do "more with less" working smarter isn't enough! We need better methods and tools.
 - Internal Anadarko sentiment

Today's Journey & Waypoints

- Stuck PIG! What?
- Better data for pipelines.
- A peek at our past.
- Our vision of the future.
- Managing corporate data; our plan.
- Some tools we'll use to get there.
- Quality...."Where's the beef pork?"
- Results from the Field!
- Questions?

Stuck Pig! Data! WHAT?!

Possible Stuck Data

- Diameter(s)
- Wall thickness(es)
- Spec
- Grade
- External Coating
- Internal Coating
- Joints & Method Used
 Cathodic Protection
- Weld Procedure
- NDE Tests & Results
 ROW Remediation

- Hydro-Test Results
- Soil Type
- Trenching Method
- Burial Depth
- Backfill Material
- Rock Protection
- Injection Points

Next Waypoint

- Stuck PIG! What?
- Better data for pipelines.
- A peek at our past.
- Our vision of the future.
- Managing corporate data; our plan.
- Some tools we'll use to get there.
- Quality...."Where's the beef pork?"
- Results from the Field!
- Questions?

Focus Areas for "Better Data"

- Regulatory
- Environmental
- Production Equipment
- Measurement
- Pipeline Infrastructure
- Telecommunications
- General Infrastructure

- Regions
 - Domestic & International
- Realms
 - Onshore & Offshore
- Functions
 - Transmission, Production, Gathering, Injection, Disposal, Inter- & Intra-Field Transfer

Pipeline Data Supports...

Pipeline Activities Require...

Why this is needed! - Examples

- Foreign Pipe!
 - Pipe of suspect quality in unknown locations
- Power Poles
 - Near miss of a pipeline
- Hot-Tap Surprise
 - Wrong data; line could not be tapped (ever!)
- Which way did it go?
 - Interconnect valves: How many? Where? Open?
- We told you what?!
 - Accuracy "Our lines are within 50 feet."
- Data Collection Results
 - Feedback from the field: less staff, more work.

Next Waypoint

- Stuck PIG! What?
- Better data for pipelines.
- A peek at our past. ("Are you smarter than a 5th grader?")
- Our vision of the future.
- Managing corporate data; our plan.
- Some tools we'll use to get there.
- Quality...."Where's the beef pork?"
- Results from the Field!
- Questions?

History Lessons

Horizontal Infrastructure

- How did we capture data on our pipelines?
 - "Not at All" (Production and "gathering" lines?)
 - Tribal Knowledge ("VEGAS" What happens here, stays here!)
 - Unstructured / Unofficial Documentation
 - General Construction Records (Some data; limited detail)
 - "Work Packs" and "Job Books" (Great detail, but...)
 - Internal Mapping Efforts ("Here's a line but where's the detail?")
 - Contract Surveys ("out of sight...and mind")
 - Vendor's Data ("Surely they will remember!")

History Lessons...continued

- How did we store and access captured data?
 - What access? (Was this required?)
 - Which formats? (Does it matter? Should it?)
 - What location? (The best! The file cabinet in my office!)
 - Interconnectivity? ("You mean I can do something with the data?")
 - Standards (...any road will take you there?)
 - "Tools" ("Teach a man to fish...")

Examples of our History

Lessons Learned

- What does History tell us?
 - Minimal data captured
 - Lack of consistent methods and standards
 - What is captured? Which attributes? How?
 - Questionable data quality
 - Limited data functionality and usage
 - Inconsistent storage and access
 - Difficult integration with "other" data, such as:
 - Satellite Imagery, Land Data (ROW, Drilling Locations, Wetlands, Tax Districts, etc.), O&M Data (costs, failures, etc.), Infrastructure (Roads, Utilities, etc.)

Next Waypoint

- Stuck PIG! What?
- Better data for pipelines.
- A peek at our past.
- Our vision of the future.
- Managing corporate data; our plan.
- Some tools we'll use to get there.
- Quality...."Where's the beef pork?"
- Results from the Field!
- Questions?

Data Sources....for the Future

- Pipe, Features, and Attributes PODS & SDE
- TOPO & Satellite Raster Depot & I bed
- Land, Leases Tobin Land
- Land, ROW Landwork
- Wells Well Information Stem (WINS)
- Hydraulic
 Hydraulic
 Sk (Gregg Engineering)
- Buil in 3: 'mage., & Ground Survey
- Fina cial SAP Financial / Control (FICO)
- Maintenance SAP Plant Maintenance (PM)
- Documents Documentum, FileNet, LiveLink

Next Waypoint

- Stuck PIG! What?
- Better data for pipelines.
- A peek at our past.
- Our vision of the future.
- Managing corporate data; our plan.
- Some tools we'll use to get there.
- Quality...."Where's the beef pork?"
- Results from the Field!
- Questions?

Pipeline Open Data Standard

PODS

- Oracle Database
- Stores pipeline and peripheral asset data
- Industry Standard
- Extendable
- Used by:
 - E&P Companies
 - Contractors
- Version 4.0 (& 4.01, 4.02)
 - Maturing
 - 179+ primary tables

Other Reasons for PODS

- Repository for all corporate pipeline data
 - Shut down redundant legacy systems
 - Reduce costs and consolidate data (KM, WGR, APC)
- Central system to <u>aggregate</u> and serve up data
 - Pipe centerline location, features, and attributes
 - Capture changing characteristics along pipeline
 - Drive consistency in capturing critical information
- Leverage existing corporate tools and systems
 - Enable data sharing with other systems
 - Eliminate gaps and overlaps of data (~ authoritative)
 - Develop a holistic "view" (land, finance, ops,)
 - Improve surveillance and analytical capabilities

Database Connectivity

Corporate Databases

Primary source for Master Trango **PODS** SPATIAL DATA. (Seismic) Database Without PODS where else would PIPELINE data fit? Master Landworks **Technical** WINS SDE LPM Database Database Database Future **Tobin Automation** Land Production Database Suite Database SAP (SCADA) SAP

Solution Summary

Priorities

- 1st, New Systems "Stop the flow of blood"
- 2nd, Legacy Systems "Document our past"
- "Right Sized"
 - Capture the right data, the first time
 - Leverage what we collect ("80/20" rule)
 - Plan for growth ("needs", data)
- "Think Strategic"
 - Utilize existing corporate infrastructure & tools
 - Capitalize on <u>valued-added</u> workflows

Improved One-Call Submissions

Next Waypoint

- Stuck PIG! What?
- Better data for pipelines.
- A peek at our past.
- Our vision of the future.
- Managing corporate data; our plan.
- Some tools we'll use to get there.
- Quality...."Where's the beef pork?"
- Results from the Field!
- Questions?

Data Capture Carousel

PODS...but how?

- Collect data into PODS
 - PODS on the handheld
- Manage with "filtering"
 - Function
 - Pipeline Operator
 - CP Technician
 - Mechanic
 - I&E Technician
 - Measurement Tech.
 - Construction Inspector
 - Focus
 - Online ("inside the line")
 - Offline ("outside the line")
 - Unassociated ("not part of the line")

What data do you need NOW versus in the FUTURE?

- Reduce number of tables
- No list "longer" than the screen
- Minimal "clicks" for input
- Drop-down lists for consistency

Configuring PODS

Handheld Collection

"Smart" Lists

Leverage Look-up Lists

- Guide the input
- "Enforce" the definitions
- Minimize error
 - TX, Texas, texas, tejas...
- Allow new items
- Monitor the process
- One master list database
- Regionalize choices
- Centralized updates

Data Collection "Foundation"

Leverage a common application for multiple uses and rapid deployment...

Hardware Spectrum

Number of Users

- Learning not steep, but not insignificant.
- •" Other" activities like post processing.
- Limited budgets; maximize tool use.

- Easiest tools for majority of users.
- Commonly present with field staff.
- Low cost, reasonable capabilities.

Equipment Cost_____

Learning Curve

Software Spectrum

Next Waypoint

- Stuck PIG! What?
- Better data for pipelines.
- A peek at our past.
- Our vision of the future.
- Managing corporate data; our plan.
- Some tools we'll use to get there.
- Quality...."Where's the beef pork?"
- Results from the Field!
- Questions?

Data Collection

- "It's all about the data!"
 - Garbage in, garbage out. (~ bad decisions)
- Data Sources
 - Contractors (primary)
 - Survey Crews (secondary)
 - Field Staff (tertiary & ad-hoc)
- Accuracy* The "best" we can get. (~cost / benefit)
 - Leverage our field staff and existing equipment!

^{*} The terms "Accuracy" and "Precision" are often confusing and will be defined later.

Precision vs. Accuracy

• Accuracy is the degree of veracity (*closeness to the actual value*) or "bulls eye" while precision is the degree of reproducibility, or "grouping".

High accuracy, low precision.

Low accuracy, high precision.

Source: http://en.wikipedia.org

Quality Proposition

- We want to use spatial data and feature attributes from a variety of sources.
- All data is good, but it's NOT created equal.
 Some needs to be precise; much doesn't.
- We must capture and use information on data accuracy and precision (or "quality") in order to effectively leverage the data.

Data Collection Quality Issues

- How can we leverage different GPS devices?
 - High, medium, and lower accuracy.
 - Professional surveys, and field staff observations.
- Can we address differences in "observed" data?
 - Touch it, see it, measure it. (~high confidence)
 - Hear say, guesses, old maps. (~low confidence)
- What level of accuracy do we require?
 - Varies by feature (centerline versus a valve)
 - Different by activity (new versus existing)

Data Collection Solutions

- Develop metrics to quantify "quality"
 - Position Quality (How accurately do we know the location?)
 - Data Quality (How representative is the data we are locating?)
- Provide guidance on the accuracy required
 - What leveled is needed (e.g., edit or addition)?
- Develop a quality matrix, with recommendations
 - Provide quality combinations for data collection
- Store quality metrics for each point collected
- Provide editing and analytical capabilities
 - Sort, report, edit, replace, etc. by any metric

Data Source Rankings

Confidence from "High" to "Low" (DRAFT)

1.	"On the Pi	pe" – 1	Touch it
----	------------	---------	----------

- 2. Visual reconciliation (open ditch, pothole, pipeline appurtenance)
- 3. Probe metal lance or locator) with confirmation

4. Vertical protrusion (vent riser, wire test lead)

- 5. Marker or sign post
- 6. Soil disturbance or subsidence
- Reference (to another non-precise location; chain notes)
- 8. Low Quality Map (hand sketch, large scale maps)
- 9. Verbal

10.

Non-georeferenced photographs

- 11. Personal memory
- 12. Best guess

Declining confidence

Position "Grade" Categories

- Surveying
 - Accuracy* < 1 cm
 - Trimble 5800 System
- Precision Mapping
 - Accuracy < 30 cm
 - e.g., Trimble GeoXH
- High-End Mapping
 - Accuracy < 1 m
 - e.g., Trimble GeoXT

- Mid-Grade Mapping
 - Accuracy < 3 m
 - e.g., Trimble GeoXM
- Low-End Mapping
 - Accuracy < 5 m
 - e.g., Trimble Juno ST
- Recreational
 - Accuracy < 15m
 - Garmin, Magellan, etc.
- Other
 - In-accuracy > 15 m

Proposed Attributes

- Location Quality
 - Survey
 - Accuracy ≤ 10 cm
 - High-end Mapping
 - Accuracy ≤ 1 m
 - Low to Mid Mapping
 - Accuracy ≤ 5 m
 - Recreational Grade
 - Accuracy < 15 m
 - Unknown
 - In-accuracy > 15 m

- Data Source Quality
 - Direct
 - Accuracy ~ < 1 m
 - Indirect
 - Accuracy ~ 1 to 5 m
 - Inferred
 - Accuracy ~ 5 to 10 m
 - Other
 - Accuracy ~ 10 to 30 m

Data Relations

Next Waypoint

- Stuck PIG! What?
- Better data for pipelines.
- A peek at our past.
- Our vision of the future.
- Managing corporate data; our plan.
- Some tools we'll use to get there.
- Quality...."Where's the beef pork?"
- Results from the Field!
- Questions?

In closing...

- When it comes to:
 - capturing pipeline data, and
 - leveraging infrastructure information...

Thank You!

Questions! & Answers?