Groundwater Modeling on the Cutting Edge
(Trinity Hill Country Aquifer, TX)

ERSI International User Conference, 2009

Ahmed Abukhater, GISP
The University of Texas at Austin
Introduction
GIS Modeling

- A model is: “a simplification of reality created to better understand the system being created” - Booch et al.

- Using GIS to prepare and analyze data, and display results, bundled with modeling code

- Vector/raster data models to represent spatial features

- Component-based software architecture

Source: TWDB
Target Area

- Trinity-Hill Country Aquifer
- Study area includes three layers:
 1. Layer 1: Edwards group of the Edwards Trinity plateau
 2. Layer 2: Upper Trinity
 3. Layer 3: Middle Trinity

Source: USGS and TWDB
GIS Modeling Objectives

- Get GAM to talk to GIS (enhance Semantic Interoperability)
- Represent GAM results in 2-D & 3-D GIS models

This includes:

- Delineate and analyze the Trinity Hill Country aquifer
- Develop planning and decision making support system tools to easily test and model different pumping scenarios
- Evaluate the impacts of incremental increased pumping (10, 20, 30, 40, and 50%)
- Develop a better understanding of different future scenarios to easily and interactively visualize impacts
- Examine aquifer behavior in specific zones, based on political boundaries and zones of potential growth
- Make informed decisions pertinent to desired future conditions (in 2050)
Model consists of:

- Matrix of rows and columns (with mile x mile cell size)
- Point locations representing well coordinates and distribution.

Inputs:
- Geology
- Recharge (based on rainfall)
- Surface water - Drains (rivers and springs)
- Pumping rate/discharge (wells)

Outputs:
- Water levels (drawdown)
- Water budget data (changes in storage and discharge to rivers)
GIS Modeling Approach

- Grid and mesh generation
- Spatial and temporal diffusion: simulation and rendering of water extraction over time
GIS Thematic Layers

- DEM raster data from USGS
- hydrography vector data from TWDB
- soil vector data from NRCS
- aquifer conductivity vector data from TWDB
- landuse vector data from USGS
- census vector data from US Census

Source: TWDB
- 69 rows x 115 columns mile by mile cells
- Different cells have different hydraulic properties
Model Grid

- Define “Zones” based on:

 1- Expected growth corridors (Buffering):
 • Major roads (1 mile)
 • Municipal boundaries (1 mile)

 2- Political boundaries (County lines)
Expected Growth Corridors
(Major Roads)

Johnson City

Major Roads

?
Expected Growth Corridors
(Municipal Boundaries)
Zones Based on County Lines
Initial water level elevations vary from 2000-500 in feet above mean sea level
GIS Modeling Methodology

GAM Results

Values of water table drawdown from GAM

Imported into

GIS

Values stored in cell centroids in GIS

Changes in water level elevations: Water level decrease (drawdown)
- Different pumping scenarios (10%, 20, 30, 40, 50%)
- Three factors were considered in 3D modeling:
 ♠ Depth of wells
 ♠ Concentration of well distribution
 ♠ Extraction rate intensity (from GAM)
- Extraction (withdrawal) values are assigned to each cell
- A continuous 3D surface (mesh) is generated and color-coded based on these values
- Density function is performed to create a continuous raster surface (2D)
- 2D results are transferred and incorporated into 3D model
Intelligent PSS
Conclusions

- Easy manipulation of inputs/outputs
- Calculating and representing drawdown
- Calibrated to match water level elevations
- Integrating surface water and groundwater data
- Facilitating groundwater simulation models with GIS
- Providing estimates of regional trends and water availability
- Studying the impact of increased pumping within each zone (cities & growth corridors)

Evaluation of Desired Future Conditions
Questions?

Thank you...

abukhater@mail.utexas.edu