

Applicant-derived Areas of Responsibility for Canadian Forces Recruiting Centers

Presentation at the 2010 ESRI User Conference

by

François Larochelle and Fraser Moffatt
DG Military Personnel Research & Analysis (DGMPRA)
July 2010

Defence Research and Development Canada

Recherche et développement pour la défense Canada

Canad'ä

Canadian Forces Recruiting Group

- Each Canadian Forces (CF) Recruiting Center has been assigned an Area of Responsibility (AOR).
- No prescriptive area has been defined for the detachments located inside the AOR of a recruiting center.
- The location of CF applicants processed by a detachment can inform the CF on what the detachment's recruiting environment looks like.

Defence R&D Canada • R & D pour la défense Canada

Problem Statement

- ESRI Business Analyst (BA) provides rudimentary tools for developing applicant-derived Areas of Responsibility (ADAOR) using its Trade Area Wizard tools.
- ADAORs developed using these basic tools have shortcomings and limited means with which to deal with spatial outliers in the data.
- We have experimented with a way to overcome these shortcomings using the Canadian province of New Brunswick as a case study.

Applicant Derived Area of Recruiting (ADAOR)

- The ADAOR is a polygon containing the applicants processed by a detachment. It can be used to:
 - Describe historical sources of applicants.
 - Allocate CF personnel and resources to the detachment.
 - Analyse the socio-demographic characteristics of the population within the ADAOR.
 - Analyse the characteristics of the ADAOR such as bus routes, universities, high schools and shopping centers.
 - Study the factors which attract the applicants to a particular detachment.
- Definition: For x in [0,1], a polygon containing x% of the applicants processed by a detachment is called a x% ADAOR.

Generating an ADAOR with BA

- **Tool**: BA Trade Area Wizard/Customer Derived Areas
- **Tool input**: Percentage (x%) of applicants contained in the ADAOR.
- **Tool output**: An *x*% ADAOR containing the closest applicants to the detachment. The shape of the ADAOR can be simple or detailed.

CF Applicant ID	Distance from Detachment	
1	0.50 km	
2	0.52 km	
•••		
74	150.05 km	
75	150.20 km	
76	151.51 km	
•••	•••	
100	405.73 km	

Example with x = 75%

Applicants <u>in</u>cluded in the 75% ADAOR

Applicants <u>ex</u>cluded in the 75% ADAOR

Alternative Metric for Generating an ADAOR

- Ideally, we would like the x% ADAOR for detachment A to exclude the applicants that are located in areas in which the probability that an applicant chooses to be processed by detachment B is the largest.
- Research question: Can we find an alternative metric which is used to determine the *x*% applicants included in the ADAOR and which is more robust to "outliers"?

Alternative Metric for Generating an ADAOR

Detachment C

- According to Reilly's law and to the Huff model, the probability that an applicant chooses to be processed by detachment A increases as:
 - His/her distance to detachment A decreases; <u>AND</u>
 - His/her minimum distance to another detachment increases.

Alternative Metric for Generating an ADAOR

• Alternative metric for creating an x% ADAOR for detachment A:

Reilly's metric
$$(RM)$$
= Distance to detachment A Minimum distance to another detachment

- Example with x = 75%
 - Applicants <u>in</u>cluded in the 75% ADAOR
 - Applicants <u>ex</u>cluded in the 75% ADAOR

CF Applicant ID	RM
1	0.05
•••	•••
74	0.95
75	0.96
76	1.21
•••	•••
100	50.01

The 75% ADAOR can be constructed by selecting the geographic units for which the centre has a value of RM not greater than 0.96.

Alternative Metric for Generating an ADAOR: Theory vs Reality

- We have compared the x% ADAOR generated using BA and the Reilly's metric for eight detachments and various values of x.
- Analysis results:
 - The ADAOR generated with the Reilly's metric was more robust to "outliers" for the majority of detachments
 - The BA ADAOR was more robust for two detachments.
- Conclusion from the analysis: The best metric for generating an x% ADAOR will vary depending on x and the detachment.
- Future work:
 - Develop a systematic methodology for assessing when the x%
 ADAOR of a detachment should be generated using BA or using the Reilly's metric.
 - Use Network Analyst to calculate drive time distance.

Suggestions for Improvements

- BA provides a quick way to generate a descriptive trade area based on the location of the customers/clients to a particular location (e.g., store, recruiting center, etc).
- Suggestions for improving the descriptive trade area module in BA:
 - Offer BA users an alternative metric such as the Reilly's metric for determining which customers will be included in the trade area;
 - Incorporate this metric into standard levels of geography for the basis of trade area delineation
 - With the existing methods currently available, allow the capability to specify additional parameters which refine the shape of the trade area (e.g., Reilly's metric, distance distribution parameters, etc)

 Defence R&D Canada R & D pour la défense Canada

At the end of the Day ...

• Whether you are generating an x% ADAOR using BA or the Reilly's metric, you should investigate how attraction to your ADAOR varies from one location to another within your ADAOR.

Defence R&D Canada • R & D pour la défense Canada

Analysing the Attraction of a Detachment within an ADAOR

- In the table containing the applicant data, create a new binary field which is equal to 1 if an applicant was processed by detachment A and 0 otherwise.
- Use the <u>Point Statistics</u> module for neighborhood analysis in the Spatial Analyst Toolbox to calculate the <u>Mean</u> value of the new binary field within neighborhoods of specified size.
- The output raster provides estimates of the probability that the applicants from the different neighborhoods choose to be processed by detachment A.

