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Abstract 
Soil pH can be used as a general guide for determining nutrient availability and therefore 
species that may grow on a given site. Within the framework of the Swiss National Forest 
Inventory, more than 1'000 soil profile samples have been described across Switzerland and 
samples have been analyzed regarding acidity.  
The main objective of this study was to generate a top soil acidity map for forested areas in 
Switzerland applying two regression model approaches: the ordinary least squares 
regression (OLS) and the geographically weighted regression (GWR). Environmental factors 
of climate, topography and vegetation were used as predictors to build quantitative 
relationships. Besides these parameters, the OLS regression contained additionally nominal 
variables which describe mainly geomorphological and pedological entities. Because the 
GWR approach is able to represent spatial regimes, these nominal variables can be 
neglected in the GWR model. 
The strength of the predictive relationships were moderate for both regression types, with 
adjusted R2 values of about 0.44 to 0.47. Considering that topsoil pH values are highly 
variable, the model performance is satisfying on a nationwide scale. 
 

1 Introduction 
Spatial modelling of the distribution of tree species is an active area of research. Information 
on species and habitat distribution is needed for many purposes, in particular to assess and 
model the consequences of global change. (Geo)statistical models are developed to relate 
the geographical distribution of species to ecological parameters. The most common 
predictive variables are climate and derived topographic variables. Although soil properties 
are important to determine the occurrence of tree species, they are often neglected because 
accurate data are lacking. 
In order to improve the soil data base, more than 1'000 soil profiles were sampled in 
forested areas across Switzerland. Besides pH, various chemical soil properties were 
analysed and morphological soil characteristics such as stone content, soil density, color, soil 
structure etc. were investigated. The main goal of this study was to generate a top soil 
acidity map for forested areas in Switzerland by developing a predictive topsoil pH model. 
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A common approach to build quantitative predictive soil property models is based on the 
five factors of soil formation as described by Jenny (1941): 
 

S = f(c,o,r,p,t) 
 
where 
   S = an individual soil produced as a function ( f ) 
   c = climate that has influenced soil development 
   o = organisms living within or upon soil 
   r = relief or topography upon which the soil has developed 
   p = parent material of which the soil has formed 
   t = time over which the factors have acted upon the soil 
 
This function implies that a (given single) soil property can in principle be calculated by a 
predictive equation such as a simple linear model. Soil observation points are intersected 
with continuous spatial datasets of soil-related variables, a model is fitted to predict soil 
variables at the observation points, and then the model is used to predict the soil variables 
for the whole area of interest. The success of this approach will depend on a) having 
sufficient predictor variables observed everywhere, b) having enough soil observations (data 
points) to fit a relationship and c) having a function f() to fit a good relationship between the 
soil and its environment (McBratney et al., 2003). 
Geographic Information Systems are used to approximate the soil forming factors such as 
topography attributes.  
 

2 Method 

2.1 Study area 
The study area was Switzerland which covers 41’000 km2 in central Europe and ranges from 
190 to 4600 m a.s.l. (Fig 1). Approximately 60% of the country is in the Alps, 30% in the 
Central Plateau and 10% in the Jura Mountains. Switzerland can be subdivided in three main 
geological units: the Jura Mountains, the Molasse Basin and the Alps. The Jura Mountains 
consist mainly of Mesozoic cover rocks (mainly calcareous bedrock), uncoupled from the 
European basement and folded in the late Miocene to early Pliocene times. The Molasse 
Basin is a thick prism of Oligocene and Miocene detrital sediments (mainly a mixture of 
calcareous and siliceous rocks). The Alps can be further subdivided in a so called Helvetic belt 
(mainly Jurassic and Cretaceous calcareous rocks besides Flysch formations), in a Penninic 
belt (with a great variety of calcareous and siliceous rocks) and in the Austroalpine nappes 
and the Southern Alps (also with a mixture of siliceous and calcareous rocks). In the inner 
part of the Alps, cristalline basement rocks are the main substratum for soil formation. The 
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mean annual temperature ranges from -10.5 to 12.5°C, and annual precipitation from 440 to 
3000 mm (Zimmermann & Kineast, 1999). 
 
 

 
 
Figure 1. Soil acidity samples within forested areas (green). 
 
 

2.2 Soil Acidity Data 
In the forested area of Switzerland, on a 8 x 8 km grid 172 soil profiles were dug down to the 
slightly weathered bedrock. In a random sampling, further 865 soil profiles were opened. All 
1037 soil profiles were described, sampled by genetic horizons and analyzed regarding pH-
value. Soil pH was measured in a suspension of fine earth (dried at 60°C until constant 
weight, sieved by a 2 mm mesh) in 0.01 M CaCl2 (1:2 solid-to-solution ratio). The “short-term 
precision” (standard deviation of replicates in the same measurement run, typically n=2) was 
< 0.2 pH, and the “long-term precision” (standard deviation of an internal reference soil, 
measured over 400 times between 1996 and 2010) was 0.05 pH. 
In order to generate a topsoil acidity map, the mean of all pH-values in a depth of 0 to 20 cm 
of each soil profile was calculated. The following calculations are all based on these mean 
values. 
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2.3 Environmental Predictors 
Following Jenny’s (1941) soil formation approach, all environmental predictors c,o,r,p,t 
should be included in the model. Because the factor time (t) is difficult to characterise, it 
have been neglected for this study.  
 
Climate (c) 
All climate variables (Table 1) refer to measurements from the national meteorological 
network for the period 1961 – 1990 (Zimmermann & Kienast, 1999). The parameters were 
derived from monthly mean temperature, precipitation and cloudiness. For the interpolation 
a digital terrain model with a resolution of 25 meters was used. 
Actual evapotranspiration was simulated using the spatially distributed hydrological model 
PREVAH for the period 1981 - 2000 (Gurtz et al., 1999; Zappa, 2008). In PREVAH the Penman-
Monteith formula was implemented which accounts for stomatal resistance for various 
vegetation classes (Monteith, 1965). 
The potential global radiation was calculated using the solar radiation analysis equations 
form ArcGIS Desktop 9.3.  
 
Organisms (o) 
The main soil forming or altering organisms are vegetation or humans, although other 
organisms can have appreciable soil-modifying effect locally (Hole, 1981). In this study, three 
different predictors were used to describe the forest vegetation (Table 1). 
The Normalized Difference Vegetation Index (NDVI) was used to model the vegetation cover 
and biomass. The NDVI is calculated as a ratio between measured reflectivity in the red and 
near infrared portions of the electromagnetic spectrum (Tucker & Sellers, 1986). We used a 
Spot5 Mosaic Scene which was radiometrically and atmospherically corrected. 
The second predictor to describe the forest structure was derived from Light Detection and 
Ranging (LiDAR) data. Based on the LiDAR raw data points a Digital Surface Model (DSM) and 
a Digital Terrain Model (DTM) were interpolated (Hyyppä et al., 2000). Both datasets have a 
spatial resolution of 2 meters. The DSM represents all the visible elements of a terrain 
surface including vegetation, whereas the DTM represents the bare ground without any 
vegetation. These two datasets were used to obtain the tree heights (Magnussen, 1999; 
Heurich 2008). 
In order to describe the type of the forest, a raster representing the degree of mixture of 
conifer and deciduous trees was used (Bundesamt für Statistik, 2001). The raster contained 3 
classes: coniferous forest, mixed forest and deciduous forest. The raster was derived from 11 
Landsat-5 TM scenes. 
 
Relief or topography (r) 
Using a DTM with a spatial resolution of 25m, the standard surface attributes such as slope, 
aspect, curvature, upstream flow length, flow direction, flow accumulation and topographic 
wetness index (TWI) were calculated (Table 1; Gallant & Wilson, 2000; Zimmermann & 
Kienast, 2000). 
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A topoindex was used to identify topographic exposure (ridge, slope, toe slope, etc) at 
various spatial scales, and to hierarchically integrate these features into a single raster 
(Zimmermann, 2010). 
 
Parent material (p) 
Parent material information was obtained from the Swiss Soil Suitability Map (SSSM) with a 
map scale of 1 : 200’000. This map shows soil-land units defined on the basis of 
geomorphological and pedological criteria which were assessed and aggregated in regard to 
their agricultural and forestry utilization potential. This was done through the appraisal of 
the pedological characteristics of the map units, dependent on the major soil groups. The 
map is strongly generalized. 
 
Table 1. Predictors 

Predictor Spatial Resolution [m] 
Climate  
Temperature, annual average (°C) 25 x 25 
Temperature, July (°C) 25 x 25 
Precipitation, year (mm) 25 x 25 
Cloudiness (%) 25 x 25 
Actual Evapotranspiration (mm) 500 x 500 
Global Radiation (WH/m2) 25 x 25 
Organisms  
Normalized Difference Vegetation Index (-) 10 x 10 
Vegetation height (m) 2 x 2  
Degree of mixture of conifer and deciduous trees (4 classes) 25 x 25  
Relief, Topography  
Height a. s. l.(m) 25 x 25  
Slope (°) 25 x 25  
Aspect (°) 25 x 25  
Curvature (1/100 m) 25 x 25  
Upstream flowlength (m) 25 x 25  
Flow direction (-) 25 x 25  
Flow acculmulation (number of cells) 25 x 25  
Topographic wetness index (-) 25 x 25  
Topoindex (-) 25 x 25  
Parent material   
Jura mountains 
Plains of central plateau 
Moraines of the hilly country 
Molasse, partly covered by moraines 
Valleys of the Central Plateau 
Molasse, partly alterated by glaciers 
Landscape with Drumlins 
Eroded moraines of the hilly country 
Foothills of the Alps, mainly Molasse 
Foothills of the Alps, mainly Nagelfluh 
Valleys of the alps 
Prealpine scenery with Flysch (Bündnerschiefer) 
Bündnerschiefer in the upper Rhone valley and in Ticino 
Alpine scenery with limestone 
Alpine scenery with cristalline bedrock 
Valley scenery (southern part of the alps) 
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2.4 Statistical Methods 
In soil science many different forms of prediction functions have been used to find 
relationships between the soil and its environment. Examples include multiple linear 
regression (MLR), generalized linear models (GLMs), generalized additive models (GAMs) 
and regression classification trees (McBratney et al., 2003). Geographically Weighted 
Regression (GWR) is a recent approach and is relatively rarely applied in physical geography 
(Miller et al., 2007). 
In this study we used the Ordinary Least Squares (OLS) Regression and the Geographically 
Weighted Regression (GWR). Both regression methods are implemented in ArcGIS Desktop 
9.3. 
OLS has been used widely in prediction of soil attributes because of the easiness and wide 
availability. The predictors are usually continuous variables. However, qualitative factors or 
nominal variables can also be integrated. OLS provides a global model of the variable or 
process and creates a single regression equation to represent that process. More 
information of the OLS regression can be found e.g. in Hastie et al. (2001) or in the ESRI 
ArcGIS Desktop Help.  
GWR provides a local model of the variable or process by fitting a regression equation to 
every feature in the dataset. It constructs these separate equations by incorporating the 
dependent and explanatory variables of features falling within the bandwidth of each target 
feature. The shape and size of the bandwidth is dependent on user input for the Kernel 
Type, Bandwidth Method, Distance, and Number of Features (Fotheringham et al., 2002; 
ESRI ArcGIS Desktop Help, 2009). 
 

3 Results and Discussion 

3.1 Ordinary Least Square Regression 
To analyze the relationship between the topsoil pH and the predictor variables and to find 
multicollinearity among the predictors, scatterplot and correlation matrices were used. In 
general, the correlation coefficients between pH and the predictors were low. The highest 
correlation coefficient was found between pH and slope (0.22). In order to identify the most 
relevant predictor variables a stepwise variable selection was performed using the statistics 
software R ver. 2.7.0 (R Development Core Team, 2009). The Akaike Information Criterion 
(AIC) determined the stopping point (i.e., number of variables included): 
 

𝐴𝐼𝐶 = 𝑛 log �
𝑅𝑆𝑆
𝑛
� +  2𝑝 
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where n is the number of observations, RSS is the model residual sum of squares, and p is the 
number of parameters. The minimum of the AIC is commonly used, as in this case, to identify 
a parsimonious model that has both low error and few parameters (Hastie et al., 2001). 
An (ideal) requirement for linear regression is that the dependent variable is normal 
distributed (Draper & Smith, 1998). In many soil studies, however, the variables show 
skewed non-normal distributions, which is reflected in the residuals. To account for the 
normality requirements the soil acidity data were log-transformed prior to the regression. 
The best OLS model found regarding AIC (-78.7) and adjusted R2 (0.44) consists of 11 
continuous variables (height a.s.l., slope, topoindex, wetness index, NDVI, vegetation height, 
yearly precipitation, cloudiness, actual evapotranspiration, global radiation, x coordinate of 
the sample location) and 2 nominal variables. The nominal variables include 17 dummy 
variables for parent material and 1 dummy variable for presence of conifers trees. 
The coefficients confirmed the expected signs of the relationship between dependent and 
independent variables. 
The OLS Tool in ArcGIS automatically tests for heteroskedasticity (inconsistence of residual 
variance) and non-stationarity (regional variation of independent variable). The Koenker’s 
studentized Bruesch-Pagan test indicated that our model violated the homoskedasticity 
assumption and it revealed non-stationarity. ArcGIS computes standard errors that are 
robust in regard to these problems. We therefore consulted the robust probabilities to 
determine the significance of the explanatory variables. Redundant variables identified by 
the variance inflation factor were removed. The residuals were normally distributed. Finally, 
the OLS model was controlled for spatial autocorrelation of the regression residuals. The 
Moran’s I statistic (Mitchell, 2005) showed that the residuals were highly clustered (Moran’s 
Index = 0.25, p = 0.0, Z = 5.47). To map clusters of over and under predictions, we applied 
the Getis-Ord Gi* Hotspot Analysis with a default bandwidth of 22 kilometers. Most of the 
clusters, independently whether cold- or hotspots, were found in the Molasse Basin (Figure 
2). As described in section 3.1, the Molasse Basin consists of either calcareous or siliceous 
sediments which impact the soil pH in opposite ways. Because the Swiss Soil Suitability Map 
is strongly generalized and does not indicate the genesis of the Molasse, the corresponding 
sample points cannot be differentiated according to their parent material. Therefore the 
spatial regime of the geology is insufficiently represented in the Molasse Basin and leads to 
clusters of over and under prediction. 
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Figure 2. Z-Scores of the OLS regression residuals. The blue points indicate over prediction , 
the red points under prediction. The area in red are Molasse sediments. 
 

3.2 Geographically Weighted Regression 
One strategy to deal with non-stationarity is to incorporate regional variation into the 
regression model such as the GWR (ESRI ArcGIS Desktop Help, 2009). The OLS regression 
model served as a starting point to build the GWR regression. The categorical variables 
describing parent material were excluded from the model. These dummy variables represent 
spatial regimes and because explanatory variable coefficients can vary in GWR, these spatial 
effects can be represented by the model itself. 
Although all explanatory variables from the OLS model had a variance inflation factor less 
than 3.5, global or local multicollinearity prevented GWR from solving the equations. Thus 
we omitted variables which tend to have multicollinearity like temperature and height a.s.l. 
or variables which only have a very smooth variation in value like the interpolated climate 
variables. The best GWR model regarding AIC (-35.1) and adjusted R2 (0.47) contained four 
continuous variables (height a.s.l., slope, topoindex, vegetation height) and one nominal 
variable which described the presence or absence of conifer trees, respectively. Because the 
spatial distribution of the soil sample points varied within the study area, we specified an 
adaptive Gaussian kernel type where the spatial context is a function of specified number of 
neighbors. The selection of the bandwidth, which controls the size of the kernel, was 
determined using the Akaike Information Criterion (AIC). Minimizing the AIC provides a 
trade-off between the goodness-of-fit and degrees of freedom (Fotheringham et al., 2002). 
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The GWR output table reports the most important diagnostic values (Table 2). 94 neighbors 
were used in the estimation of each set of coefficient. This means that each local estimation 
was based on about 9% of the data. 
 
Table 2. GWR diagnostic values 

Name Value 
Neighbours 94 
Residual Squares 41.64 
Effective Number  194.32 
Sigma 0.2223 
AICc -35.10 
R2 0.57 
R2 Adjusted 0.47 

 
 
Applying Moran’s I statistics (Mitchell, 2005) showed that there is no significant clustering of 
the residuals (Moran’s Index = 0.04, p = 0.32, Z = 1.0). The Hotspot Analysis using the Getis-
Ord Gi* statistic confirmed that there was no significant over or under prediction (Figure 3). 
 
 
 

 
Figure 3. Z-Scores of the GWR regression residuals. 
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3.3 Model Comparison 
In order to evaluate the model performances, we calculated diagnostic indicators (Table 3). 
It is obvious that the GWR model performed better than the reduced OLS, which both 
contained identical variables.  
Table 3. Regression diagnostic values 

Model AIC R2 Adjusted R2 Residual sum 
of square 

Root mean 
square error  

OLS full -78.7 0.45 0.44 53.1 0.2263 (1.25*) 
OLS reduced 344.1 0.14 0.13 83.6 0.2848 (1.33*) 
GWR -35.1 0.57 0.47 41.6 0.2000 (1.22*) 

*in pH units 
 
The AIC values indicated that the full OLS model, which contained seven additional variables 
(cf chapter 4.1), performed better than the GWR model. All other indicators showed the 
contrary, but were expected to do so given the difference in degree of freedom between the 
two models. However, the OLS full regression residuals were positively autocorrelated and 
therefore violated OLS assumptions. Autocorrelation of the residuals indicates that the 
standard errors are underestimated and the correlation coefficient often indicates a 
significant relationship between variables when in fact there is none (Clifford et al., 1989).  
 

4 Conclusions 
Although Geographically Weighted Regression was primarily developed for econometric 
analyses, it is increasingly applied in physical geography. In the present study we used this 
approach to model soil acidity on a nationwide scale. Soil pH is a key factor for plant species 
distribution and is therefore indispensable for vegetation modelling. 
 
Parent material, which is one of the soil formation factors, is represented in this study by the 
Swiss Soil Suitability Map (SSSM). These nominal variables had a major influence on the OLS 
model. Without these variables, the OLS regression modeled only a weak relationship 
between the dependent and independent variables whereas the full OLS regression 
performed better. However, autocorrelation of the residuals indicated that important 
information was still missing. As shown by the Getis-Ord Gi* Hot Spot Analysis most of the 
clusters of over/under predictions were within the Molasse Basin. The nominal variables 
which represented the Molasse sediments are too generalized and do not reflect the spatial 
regime of the parent material adequately. 
The GWR model in this study did not violate an underlying assumption and therefore is more 
reliable than the OLS model. An adjusted R2 value of 0.47 is satisfying considering that pH of 
topsoils are highly variable. GWR models are able to represent local regimes because the 
explanatory variable coefficients can vary in space. Therefore spatial regime data like the 
SSSM are not required in GWR models. This can be a great benefit in soil modeling because 
nationwide parent material data are often not available or are not detailed enough. 
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The results of this study are acceptable but have to be cross-validated to ensure the model 
performance. Furthermore we plan to test different model approaches like generalized 
linear models (GLMs) or generalized additive models (GAMs). These models are more 
appropriate regarding non-normal response distribution and non-linear relationships 
between dependent and independent variables (Bishop & Minasny, 2005).  
 
ArcGIS Desktop 9.3.1 contains very useful and important statistical tools for analyzing spatial 
distributions, patterns, processes, and relationships. Some of the analyses, as e.g. the 
stepwise variable selection, were conducted in the R software (The R Project for Statistical 
Computing, http://www.r-project.org). R provides a wide variety of statistical and graphical 
techniques. However, all the data calculations for the independent variables have to be 
primarily performed in GIS software as in ArcGIS for example. Therefore a data transfer 
between the two software packages is necessary which can be cumbersome sometimes. 
With the use of Python as a conduit, the R functionality can be integrated in the ArcGIS 
environment. On the ESRI resource center, there is an example of how to use R in ArcGIS 
Desktop. 
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