TECHNISCHE
UNIVERSITAT
ODRESDEN

Faculty of Forestry, Geosciences and Hydro sciences, Department of Geosciences, Geoinformation Systems

Moving Code in SDI:
Sharing Geoprocessing Tools with

Web Services

Matthias Muller, Lars Bernard, Johannes Brauner

Outline

= Service-based geoprocessing

= “Moving Code” approaches

= “Moving Code” infrastructure & requirements
= Advantages in lifecycle management

= Assessment and outlook

Service-based Geoprocessing (GP)

= Data-driven (state-of-the-art)
= The focus is set on data
= GP Services provide a static set of spatial operations
= Data is shipped around

= Code-driven
= The focus is set on code
= GP Services are supplied ad-hoc with new operations
= GP Services receive dynamic updates

= GP Services retrieve algorithms from different producers and
locations

= Code-driven infrastructures require “moving code” mechanisms

Data-driven Geoprocessing in SDI

br duies -
Execuls Request Morkdlow E ant Processing
Reult

J,."f Inlermediate H Inberrmecale intermediate [

=7,

iz .125_;; ‘

1 ten
Spatial Data Siome Spatial Processang Spabal Data Store Spatial Processing
Engina Engine

S — Service
t- — data transportation time

ts — time for Web Service invocation

The “Code driven” Geospatial Calculator

Calculator Memory

Custom Custom
Constants / Data Code

——_I____————____~~
- ~ -~

Alice
(Developer)

Used by Bob

Created by Alice

“Moving Code” for Geoprocessing — A Classification

Data Coupling

Tightly coupled Loosely coupled
Instant =N S 1EIN
execution
Execution Execute(Code) Execute(Code, Data)
Scheme

Permanent
deployment '

Deploy(Code) Execute()
[multiple]

A

— A

Deploy(Code) Execute(Data)

[multiple]

“Moving Code” for Geoprocessing — A Classification

Data Coupling

Tightly coupled Loosely coupled

Web Coverage Processing
Instant Service = Filter Encoding
execution Filter Encoding

Execution SQL statements

Scheme

Stored SQL query _
(Transactional WPS)
deployment

= Grid infrastructures

A Simple “Moving Code” Architecture

SL &S

OWs C‘lperatur Clients Develuper Clients

(HTTP]

Algorithm Reglstnes

ECH:IE { Data ﬁ
'EE
Local Workspaces

Corresponding Iltems

Data Services

Workspaces to Cache Tightly Coupled Data

= Workspaces contain code and some (constant) data

= No need to ship data around that is required in every execution

(“caching”)

|
[
|
I
-

Workspaces have to be designed to run on each intended platform

Sharing Tools with Workspaces in
ArcGIS (Taken from the ESRI Help)

<ToolShare>
L % <Toolbox>
- @'H <ArcMap med>
— E‘] Readne. txt
I T | |
" = J -
ToolData Scripts Doc

Scratch

l_ E_f'j Scratch.gdb

Deployment & Execution

Transactional Extension /
Non-Standard

S~

Daploy Roquast Deploymeant
Sarvice

L

Akgorithm

Expcute Roquast

Web Processing Service

i

P

/

\

L~
]2 Ed QP Es e Eas
N Loes loez toe
Is
35 5 Es
Siora

Code / Data Package

(= 7 daie Procassing /
Fesull
=

(3

Spatal Cata Stone

Spatial Data Store

J

[_i Data Services

Spatial Data Stere (invoked ad-hoc in

Execute Request)

Linking WPS Process Interfaces, Algorithms and Workspaces

| wps::DeploymentProfile |

ausess - -
EEEEmEEEEEmEE= ,F"‘-: =1
I Standard I
| e sreferences |
| wps:ProcessDescription] >’ISL Transformation
i
I . 1 I 1
I
L - - —l— e = === - <4 1 +generales
wfracess
—_— _— _— —_— ql __________________
|
Off-Standard 1
|
1
e AlgorithmDescription
GPAlgorithm 1 1 |+algorithmWorkspaceLocation
+executionParameter]1..*] & +algorithmExecutableLocation
) +algorithmExecutableTypelURN
+axecute|) rdescribes |y nracessingSystemURN

+require #reguing

has

GPBackend

g —

identifies
___\ ol
ComponentURN

+algomhmParameter

HUSEE®
i

Y
"'\'\-H

AlgorithmDescriptionSchema

+algonihmWorkspacelocation[1]
+algorthmExecutableLocation[d..1]
+algorithmExecutableTypelURN[1]
+processing3ystemURN[1..%]
+algarithmParameter(1..”]

A
I

Linking WPS Process Interfaces, Algorithms and Workspaces

= We lack a generic Geoprocessing algebra ...
= How to communicate the Algorithm and the Workspace to the Service?
= The number of Geoprocessing Systems is limited ...
= Can we instead describe the required runtime environment?
= What about the parameter mapping?

AlgorithmDescriptionSchema

+algorithmWorkspacelLocation[1] Where to find the Code / Data
+algorithmExecutableLocation[0..1] Package and the executable.
+algorithmExecutable TypeURN[1]
+processingSystemURN[1..%]
+algorithmParameter[1..”]

v

The required runtime
environment,

vy

The legacy parameters.

Deployment

% » Develop algorithm

OWs Dperatnr Clients Develuper Clients

upload when ready deploy
Process
(Description
Algorithm

Fetch A- Descrlptlon g ' Description

Fetch Package Workspace

Algorithm Registries WPS Instances

Code / Data ﬁ
Packages

Local Workspaces

Data Services

Life Cycle Management

has

Process
Description

references

Workspace

represented

Algorithm
Description

links to

as

Code / Data
Package

Static Part

Life Cycle Management

a7 YEEY:

Develuper Clients

OWs C‘lperatnr Clients

upload when ready

 Develop algorithm

* Modify / update algorithm

Description

(HTTP

Data Services

Reload &
update

Algorithm Registries O demand /

scheduled

WPS Instances

Local Workspaces

Holds reference to Algorithm

Process
Description

Algorithm
Description

Workspace

Life Cycle Management

Proiotypang

Algarithm
Description

» Develop algorithm

* Modify / update algorithm

Executable
Akgoriihm
Package

Refactoring

l

Registry Uptoad

l

Deployment on
WPS Instancs

= Algorifhm

Slmag_e

Process
Description

Algorithm
Description

Workspace

Code-driven vs. Data-driven

= ‘Moving code’ approaches are beneficial if:

Algorithms are frequently changed and evolved

Identical algorithms have to be deployed at or shared among
several service instances

A substantial amount of data can be shipped with the algorithm
and stored prior to execution

Some tightly coupled data sets can be used to increase
performance (caching impact)

Algorithms have to be placed at a processing service that
resides “close” to the data (bandwidth impact)

Code-driven vs. Data-driven

= Data-driven approaches are beneficial if:

All required data sets change frequently
One-time assembly and execution of workflows
Real-time response for complex service chains is not required

The required atomic operators are available at processing
services or

The required simple operators are available at the data service
level

What's next?

= Progress in the design of well defined geoprocessing
algebras

= Evaluate potential for parallelization
= Create Service Grids

= Evolve the Standards

