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Outline

= Service-based geoprocessing

= “Moving Code” approaches

= “Moving Code” infrastructure & requirements
= Advantages in lifecycle management

= Assessment and outlook



Service-based Geoprocessing (GP)

= Data-driven (state-of-the-art)
= The focus is set on data
= GP Services provide a static set of spatial operations
= Data is shipped around

= Code-driven
= The focus is set on code
= GP Services are supplied ad-hoc with new operations
= GP Services receive dynamic updates

= GP Services retrieve algorithms from different producers and
locations

= Code-driven infrastructures require “moving code” mechanisms



Data-driven Geoprocessing in SDI
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The “Code driven” Geospatial Calculator
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“Moving Code” for Geoprocessing — A Classification
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“Moving Code” for Geoprocessing — A Classification

Data Coupling
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= Grid infrastructures



A Simple “Moving Code” Architecture
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Workspaces to Cache Tightly Coupled Data

= Workspaces contain code and some (constant) data

= No need to ship data around that is required in every execution

(“caching”)
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Workspaces have to be designed to run on each intended platform

Sharing Tools with Workspaces in
ArcGIS (Taken from the ESRI Help)
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Deployment & Execution
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Non-Standard

S~

Daploy Roquast Deploymeant
Sarvice

L

Akgorithm

Expcute Roquast

Web Processing Service

i

P

/

\

L~
]2 Ed QP Es e Eas
N Loes loez toe
Is
35 5 Es
Siora

Code / Data Package

(= 7 daie Procassing /
Fesull
=

(3

Spatal Cata Stone

Spatial Data Store

J

[_i Data Services

Spatial Data Stere  (invoked ad-hoc in

Execute Request)



Linking WPS Process Interfaces, Algorithms and Workspaces
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Linking WPS Process Interfaces, Algorithms and Workspaces

= We lack a generic Geoprocessing algebra ...
= How to communicate the Algorithm and the Workspace to the Service?
= The number of Geoprocessing Systems is limited ...
= Can we instead describe the required runtime environment?
= What about the parameter mapping?

AlgorithmDescriptionSchema

+algorithmWorkspacelLocation[1] Where to find the Code / Data
+algorithmExecutableLocation[0..1] Package and the executable.
+algorithmExecutable TypeURN[1]
+processingSystemURN[1..%]
+algorithmParameter[1..”]
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Deployment
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Life Cycle Management
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Life Cycle Management

a7 YEEY:

Develuper Clients

OWs C‘lperatnr Clients

upload when ready

 Develop algorithm

* Modify / update algorithm

Description

( HTTP

Data Services

Reload &
update

Algorithm Registries O demand /

scheduled

WPS Instances

Local Workspaces

Holds reference to Algorithm

Process
Description

Algorithm
Description

Workspace




Life Cycle Management
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Code-driven vs. Data-driven

= ‘Moving code’ approaches are beneficial if:

Algorithms are frequently changed and evolved

Identical algorithms have to be deployed at or shared among
several service instances

A substantial amount of data can be shipped with the algorithm
and stored prior to execution

Some tightly coupled data sets can be used to increase
performance (caching impact)

Algorithms have to be placed at a processing service that
resides “close” to the data (bandwidth impact)



Code-driven vs. Data-driven

= Data-driven approaches are beneficial if:

All required data sets change frequently
One-time assembly and execution of workflows
Real-time response for complex service chains is not required

The required atomic operators are available at processing
services or

The required simple operators are available at the data service
level



What's next?

= Progress in the design of well defined geoprocessing
algebras

= Evaluate potential for parallelization
= Create Service Grids

= Evolve the Standards



