

Performing Regression Analysis Using Raster Data

Kevin M. Johnston

Xuguang Wang

Outline

- Linear regression
 Budworm impact
 - Budworm impact
- Spatial autocorrelation
- Sampling
- Using the coefficients
- Spatial regression
- Logistics regression
 - Deer habitat
 - Species distributions and climate change

The problem : Linear regression

- From field data a raster surface has been created defining the percent canopy damage caused by spruce bud worm (an insect)
- There is an assumption that where the insect has caused greater canopy damage, there are more favorable features located there
- We know what features the insect is responding to but it is too complex to quantify the relationship
- We would like to predict the damage the spruce budworm might cause on other locations (from the features located at the locations)

Regression analysis in GIS

- Establishes the relationship of many features and values
- Presents the relationship of these features in a concise manner
- Allows for further exploration of the data

Regression analysis in GIS

 The analysis output format is conducive to the GIS environment

 Can make assumptions from samples and apply them to the entire population (or every location in the raster)

Character of regression

- Dependent variable
 - Biomass
 - Tree growth
 - Probability of deer
- Independent variable
 - Slope
 - Soils
 - Vegetative type
- Linear regression (methods, stepwise, etc)
 - Continuous data
- Logistic regression
 - Presence or absence

Spatial autocorrelation

- What is it?
- The effects of it on the output from the regression analysis
- Testing for spatial autocorrelation
 - Spatial correlation indices
- Sample points
 - Correlation (take every 5 cell out of 6 row)
 - Random sampling
- In the statistical algorithm
 - Spatial Regression

Using a statistical package

- Synergistic use of a statistical package with Spatial Analyst
- Why do we need the statistical package?
- Basic assumption-independent observations
- Utilizing the results from the models in the GIS

Creating the preference surface

- Run regression with the significant factors
- Obtain the coefficients for each value within each raster
- Use the coefficients in a Map Algebra expression to create a preference surface
- The coefficients identify if an independent variable has a positive or negative influence and the magnitude of the influence

Creating the preference surface

• Linear regression

$$Z = a_0 + x_1 a_1 + x_2 a_2 + x_3 a_3 \dots x_n a_n$$

Creating the preference surface

Output from a regression

Coef#	Coef
0	1.250
1	-0.029
2	0.263

Creating the prediction surface with Map Algebra

Outgrid = 1.25 + (-0.029* elevation) + (0.263 * distancetoroads)

Spatial Regression

- Still must determine significant variables
- Spatial regression uses spatial autocorrelation
- Use the results to create a probability surface
- Where the regression capability exist:
 - Classical statistical packages
 - SAS, SPSS, R
 - ArcGIS Spatial Statistics toolbox
 - Ordinary Least Squares
 - Geographically Weighted Regression

Regression analysis: Problem two

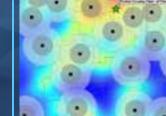
- We know where deer are located
- We have psuedo absence where they are not
- We believe that there are certain attributes that the species prefers at the locations they are at
- We want to predict the preference by the species for each location in the study area

Logistics regression

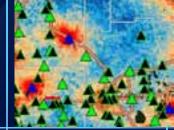
- Presence/absence model
- Sample
- Derive coefficients
- Create a probability surface

 $Z = 1 / 1 + exp(-Sa_ix_i)$

ulton County Dept. of Health and Wellness/District 3, Unit 2


Demo 1: Regression analysis

Linear


Logistic

Spatial autocorrelation

Problem 3: Logistics regression – True absence

- We want to examine the potential affects of climate change on the distribution of animal species
- We have the known current locations of the distributions of the species
- We have a series of independent variables including
 - Vegetation type (as dummy variables)
 - Elevation, slope, and aspect
 - Distance from roads and cities
 - Etc.

The climate data

From Ron Nielson's group at Oregon State University/ US Forest Service

We have two climate change models

- Hadley (from the UK)
- MIROC 3.2 (from Japan)
- Each model has two scenarios
 - The moderate, mid-level "A1B" carbon scenario
 - The higher, more extreme "A2" carbon scenario
- There are three time periods
 - "e": Early-century, or 2020-2024 averaged
 - "m": Mid-century, or 2050-2054 averaged
 - "I": Late-century, or 2095-2099 averaged

The model

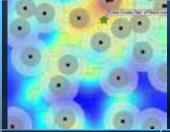
- Sample points and associate the raster values for the dependent and independent variables
- Tools created to run R logistics regression
- Fit model
- Coefficients and diagnostics statistics
- Use coefficients to create a raster surface

Creating the raster surface

Apply the logistics formula with coefficients

 $1/(1 + \exp(-1 * (9.595857 + (-1.28212 * tmp1991) + (-0.003687 * ppt1991) + (0.426121 * veg8_10) + (-0.560821 * veg7_10) + (-2.077026 * veg6_10) + (-2.941375 * veg2_10) + (-0.496024 * veg17_10) + (-1.740473 * veg16_10) + (0.557113 * veg12_10) + (-7.103907 * veg10_10) + (0.016223 * slope) + (-0.000674 * elevation) + (-0.000555 * aspect) + (-0.00062 * disthigh) + (0.000049 * distcity))))$

- Select for probability of .5 or greater
- Repeat for each model, for each scenario, and for time period


ulton County Dept. of Health and Wellness/District 3, Unit 2,

Demo 2: Regression analysis

Logistics regression

Climate change analysis

Summary

- Linear regression
 - Magnitude
- Logistics regression
 - Presence/absence
- Spatial regression
- Sample, calculate coefficients, and create surface
- Statistical capability
 - Spatial Statistics Toolbox
 - ArcGIS to R; SAS Bridge

ArcGIS Spatial Analyst Technical Sessions

An Introduction - Rm 1 A/B
 Tuesday, July 12, 8:30AM – 9:45AM
 Thursday, July 14, 10:15AM – 11:30AM

Suitability Modeling - Rm 1 A/B
 Tuesday, July 12, 1:30PM – 2:45PM
 Thursday, July 14, 8:30AM – 9:45AM

Dynamic Simulation Modeling – Rm 5 A/B
 Wednesday, July 13, 8:30AM – 9:45AM

Raster Analysis with Python – Rm 6C
 Tuesday, July 12, 3:15PM – 4:30PM
 Wednesday, July 13, 3:15PM – 4:30PM

Creating Surfaces – Rm 5 A/B
 Wednesday, July 13, 1:30PM – 2:45PM

ArcGIS Spatial Analyst Short Technical Sessions

 Creating Watersheds and Stream Networks – Rm 6A Tuesday, July 12, 10:40AM – 11:00AM

 Performing Image Classification – Rm 6B Tuesday, July 12, 8:30AM – 8:50AM

 Performing Regression Analysis Using Raster Data – 6B Tuesday, July 12, 8:55AM – 9:15AM

Demo Theater Presentations – Exhibit Hall C

 Modeling Rooftop Solar Energy Potential Tuesday, July 12, 3:30PM – 4:00PM

Surface Interpolation in ArcGIS
 Wednesday, July 13, 9:00AM – 10:00AM

Getting Started with Map Algebra
 Wednesday, July 13, 10:00AM – 11:00AM

Agent-Based Modeling
 Wednesday, July 13, 5:30PM – 6:00PM

Open to Questions

...Thank You!

Please fill the evaluation form.

www.esri.com/sessionevals