

Esri International User Conference | San Diego, CA Technical Workshops | Analysis and Geoprocessing

Network Analyst Creating Network Datasets

Alan Hatakeyama

Colin Childs

Agenda

- Preparing street data for use in network dataset
 - Oneway streets
 - Hierarchy
 - RoadClass attribute
- Using turns, signposts, and historical traffic data
- Creating a multi-modal network dataset
- Parameterized Attributes
- Evaluators tips and tricks
- Support & Resources
- Questions

Do I need to create my own network dataset?

- StreetMap network datasets available
 - SDC format
 - Ready to use
 - Network dataset already created
- StreetMap data on Data & Maps
 - Comes with ArcGIS
 - Data for North America
- StreetMap Premium data
 - Data is more current
 - Data for North America or Europe

Know Your Street Data

 What information can be used as a setting in the network dataset?

Review – what is in a Network Dataset?

Sources Line features Point features Turn features Connectivity End Point / Any Vertex Z-Elevation fields Connectivity groups Attributes Cost Descriptor Restriction Hierarchy Directions Primary street names Alt. street names Highway shields Boundary field Signpost data

Know Your Street Data

View data – geometry and attributes

Read the documentation for data

How is street geometry represented? What street information is provided? In what layers is this information located? How is this information formatted?

What information can be used as a setting in the network dataset?

Coincident Geometries

- To enable network connectivity to be modeled
 - Points of coincidence should exist where line features cross or intersect

Creating coincident geometry

- Include sources in a Topology
- Use the Geoprocessing Integrate Tool
- Both methods compare features and makes vertices within the cluster tolerance coincident
 - Inserts vertices where features intersect

Snaps features that are not coincident

Common fields for street data

Field	Data type	Application
Elevation	Integer	Ensures proper connectivity
Oneway	Text	Helps determine one way streets
Length	Double	Calculate shortest route
Travel time	Double	Calculate fastest route
Hierarchy	Integer	Ranking of streets for routing on large network datasets
Speed	Integer	May be used to calculate travel time
Road class	Integer	Classification of roads – used for formatting directions text
Street name or address data	Text	Helps generate network locations and directions

Connectivity using Elevation Fields

- Attribute that enables network dataset to represent multiple "levels" for line features
- Applied to line features with coincident endpoints
- Planar and non-planar features are supported
- Commonly called z-elevation or z-levels

Elevation fields – Overpass/underpass scenario

• Four lines with coincident endpoints

0-1 lines do not intersect 0-0 lines at the same junction

Oneway field – Most common method

- Text field containing values: FT, TF, <>, N
 - "FT" one-way in digitized direction

If other field values, change expression

Hierarchy

- Minimizes impedance while favoring higher order roads
- Basic assumption:
 - Higher order roads are "faster" (time), not necessarily "shorter" (distance)
- Hierarchy classifies network edges into multiple levels when the network dataset is built
 - Levels: lower number = higher order road

Hierarchy Considerations

- Highest level needs to be connected to each other
 - Take restrictions into consideration
- Composition of highest level hierarchy dictates performance vs. accuracy of route returned
 - Larger: more optimal routes, but is slower
 - Smaller: faster performance, but route is less optimal
- Values derived from road classification (e.g., CFCC)
- Edges per hierarchy guide:

	Regional	National	Edge count
Hierarchy	% of edges	% of edges	better guide
1	5%	3%	~100,000 max
2	15%	17%	Percentage of total
3	80%	80%	Percentage of total

RoadClass attribute

- Used for formatting the text of driving directions
- Has no effect on network analysis
- Descriptor attribute, five possible integer values:

RoadClass Value	RoadClass Description	Driving Directions
1	Local road	"Turn left on Main St"
2	Limited access highway	"Go East on I 44"
3	Ramp	"Take ramp and go on US-7 N"
4	Ferry	"Take Lake Expy ferry"
5	Roundabout	"Take roundabout and proceed South on Main St"

Dissolve Network (new at ArcGIS 10)

- Input: Network dataset
- Output: New network dataset with fewer line features
 - North America: 43.8M lines -- >> 15.7M lines

• Fewer line features – Faster network analysis

Dissolve Network

- Speeds up network analysis for large networks
- Geoprocessing tool in Network Dataset toolset

- Creates a new dissolved network dataset
 - Original network dataset is unedited
- Only fields used by network dataset are present in dissolved data
 - Use dissolved dataset for network analysis
 - Keep original data for maintenance and other work

Demonstration

Adding fields for routing to TIGER/Line® street data

Turns in the Network Dataset

- Describe transitions between two or more edges
- Used to model cost and/or restrictions in the network
- Incorporating turn elements more realistic network solver results
- Two options:
 - Turn features
 - Global (default) turns
 - Or Both

Turn Feature

- Polyline geometry
- Turn references edges by:
 - Feature class ID
 - Feature ID
 - Position
- Turn elements built by edge references

Field	Value
ObjectID	1
Shape	Polyline
Edge1End	Y
Edge1FCID	42
Edge1FID	104
Edge1Pos	0.5
Edge2FCID	42
Edge2FID	102
Edge2Pos	0.6
Edge3FCID	42
Edge3FID	103
Edge3Pos	0.4

Editing Turn Features

- Create and edit turn features in the ArcMap Editor
- Edit as you would any other line feature
- Snap geometry to each street in turn
- Network dataset must be built before editing turn features

~			/
Editor			
Editor - 🕨	🖋 🔹 Task: Modify Feature	Target: To	лтs <u> </u>
		\sim	
			\sim
		7	

Global Turns

- For example adding a penalty for all left turns
- Consist of:
 - All implied two-edge turning sequences in network
 - No need to create a turn feature for every two-edge sequence in the network

- Specify attribute values for global turns
 - VB Script evaluator; or
 - Global Turn Delay evaluator

Sample VB Script Code for Global Turn Penalty

Pre-Logic VB Script Code: a = Turn.Angle If a > 210 And a < 330 Then turnTime = 0.5 Else turnTime = 0 End If Expression: turnTime

...or use the Global Turn Delay evaluator

Straight	From Local To Local Road Across Local Road			2
Straight	From Local To Local Road Across Secondary or Primary Road			15
Straight	From Local To Secondary Road			3
Charles and the second second	the second design of the second se	· · · · · · · · · · · · · · · · · · ·	 	

Converting Existing Turn Data

- ArcView 3.x or ArcInfo Workstation data
 - Convert streets with Feature Class To Feature Class geoprocessing tool
 - Convert turn table with Turn Table To Turn Feature Class geoprocessing tool

- Commercial data with multi-edge turns
 - Use the Create Turn Feature Class from Multi-Edge Turn Table script from the Resouce Center

Signposts

- Text seen on highway signs
 - Typically includes exit number, street name, and/or destination
- Has no effect on network analysis
- Enhances text of driving directions:
 - "At exit 73B, take ramp to US-421 North toward N Wilkesboro"

Signpost Data – Two tables

- Actual text on sign

Exit number73 BStreet name(s)US-421DirectionNorthDestination(s)N Wilkesboro

- Signpost streets table
 - Streets traversed when following the sign

For Vendor data use "Import Signposts" .NET SDK Developer sample

Adding Signposts to the Network Dataset

Signpost tables specified in Directions Settings

Net	wor	k Direct	ions Prope	erties						
G	ienei	al Shie	lds Road (Detail						
	_ Dir	ections S	ettings							
)isplay Le	ngth Units		Miles					
	L	ength At.	tribute		Meters					
	1	ime Attri	bute		Minutes					
		ignpost f	Feature Clas	55	Signposts					
		ignpost S	5treets Tabl	e	Signposts	_Streets				
	r Str	eet Nam	e Fields							
								n		
	<u> </u>	urce:	Streets				_			
		lank <u></u>	Prefix	Prefix	Name	Suffix	Suffix	Full N	Hwy Dir	Langi
	F	rimary			NAME					

Historical Traffic

- New at ArcGIS 10
- Travel time varies by time of day and/or day of week
 - Travel at 8am:

- Travel at 5pm:

 Used by Network Analyst when a Start Time is specified for the route

Historical Traffic Data – Two tables

Traffic Profiles table

- Contains free-flow speed multipliers by time of day

Profile	1 am	5 am	9 am	1 pm	5 pm	9 pm	
16	× 1.0	× 1.1	× 2.3	× 1.2	× 1.4	× 1.1	

- Streets-Traffic Profiles join table
 - Specifies free-flow travel times and profiles to use

]	Feature class ID	12
	Feature ID	41
	Positions	0.0 to 1.0
	Free-flow travel	10 seconds
	Sunday Profile	Profile 10
	Monday Profile	Profile 16
٦		

Historical Traffic in the Network Dataset

Specify when creating the network dataset

New Net	ew Network Dataset				
Doy	ou	want to use historical traffic data with this netw	ork dataset?		
0					
0	_				
۲	Ύe	S.			
l	His	storical Traffic Tables:			
		Traffic Profiles Table	▲		
		Table	DailyProfiles		
		First Time Slice Field	TimeFactor_0400		
		Last Time Slice Field	TimeFactor_2155		
		Minutes Per Time Slice	5		
		First Time Slice Start Time	4 AM		
		Last Time Slice Finish Time	10 PM		
	Ξ	Streets - Traffic Profiles Join Table			
		Table	Streets_DailyProfiles		
		Base Travel Time Field	FreeflowMinutes		
		Base Travel Time Units	Minutes		
		Sunday ProfileID Field	PROFILE_1		
		Monday ProfileID Field	PROFILE_2		
			< <u>B</u> ack <u>N</u> ext> Cancel		

Demonstration

Using Turns, Signposts, and Historical Traffic Data

Connectivity for Multi-Modal Network Dataset

- Connectivity groups "connect" at transfer points
 - Example: Rail stations
- Non-connecting edge sources in separate connectivity groups

Multi-Modal – considerations for Road & Rail

- Road & Rail example two common scenarios:
 - Railroad station not on rail track
 - Railway station entrance along middle of road
- For Railroad stations not along the road
 - Create "transfer edges"

- For station entrances not at the road ends
 - Create junction with Override policy at entrance
 - Insert vertex on street feature at station entrance

Network Attributes – Multi-Modal Network Dataset

- Create a cost attribute for each scenario you are modeling
 - Automobile
 - Pedestrian (walk only)
 - Pedestrian using light rail
 - etc.
- Create restriction attributes to prevent invalid traversals
 - Example: Restrict driving on the rail lines

Demonstration:

• A multi-modal network dataset

Parameterized Attributes

- Network attribute that accepts a parameter
- Used to model dynamic aspect of an attribute's value

Example – implementing a height limit

- Requires both a Descriptor and a Restriction attribute
- Descriptor attribute
 - Specifies height limits for each road
- Restriction attribute
 - Stores vehicle height parameter
- Performs the appropriate restriction
- May use Function evaluator or VB Script evaluator
 - Function evaluator faster & easier

Restriction evaluates to True (Restricted) if vehicle height exceeds 12 ft, 6 in

e-Looir VB Script Code

Function Evaluators					restricted - Falke
<u>A</u> ttribute or Constant: MaxHeight	Operator:	<u>P</u> arameter or Constant: VehicleHeight	•	OK Cancel	height = ParameterValueByName("VehicleHt") # height > 0 then maxHeight = Edge.AttributeValueByName("MaxHeight") # maxHeight > 0 then restricted = height > maxHeight end # end #

Using Height restriction during solve

• When using solver:

General | Layers | Source Analysis Settings | Accumulation Attribute Parameters Ne

- Set attribute restriction on Analysis Settings tab
- Specify actual vehicle height on Attribute Parameters
- Solver Result:
 - Street is restricted when the actual Vehicle Height is greater than street's MaxHeight attribute value

Evaluators – review

- A function that determines attribute values for network elements in a network dataset
- Six different types available with ArcGIS:
 - Field
 - Constant Global Turn Delay
 - Function Edge Traffic VB Script
- Example usages:

Attribute	Evaluator(s)
Length	Field – assign the [meters] field
TravelTime	Edge Traffic, Global Turn Delay – use historical traffic, turn delays
TurnRestriction	Constant – "true" (implies all turns restricted)
MaxHeight	Field – assign the [Height_Limit] field
HeightRestriction	Function – specify MaxHeight attribute < VehicleHeight parameter

Custom evaluators can be developed

Efficiency of calling evaluators

Field evaluator (including Field Expressions)

- Fast: Attribute values stored when network is built; Retrieved at solve time
- Constant, Function, & Global Turn Delay evaluators

- Fast: Attribute values generated at solve time using precompiled logic
- Edge Traffic evaluator

Fast: Multipliers & free-flow values stored when network is built; Travel time determined during solve

VB Script evaluator

- Can be slow: Invokes scripting at solve time
- Custom evaluator
 - Depends on implementation

Evaluators – Tips and Tricks

Field evaluator

- Read in values from a field; and/or
- Perform calculations using multiple field values
 - Example attributes: Length, DriveTime, Oneway
- Constant evaluator
 - Same attribute value across all network elements
 - Example attribute: TurnRestriction
- Custom logic
 - Initial prototyping with VB Script evaluator
 - Final implementation using Custom evaluator
 - Better performance

Esri Support Center

- Online portal to technical information
- Knowledge Base
 - Technical articles
 - White papers
 - System requirements
- Downloads
 - Patches, service packs
 - Data models
 - ArcScripts and samples
- User forums
 - Discussion groups
 - E-mail lists

http://support.esri.com

For more information

- Network Analyst Product Page
 - Links to Demos, Brochures/White Papers, Success Stories
 - http://www.esri.com/software/arcgis/extensions/network analyst/
- Free webcast
 - Using Network Analyst in ArcGIS Desktop 10
 - http://training.esri.com/acb2000/showdetl.cfm?DID=6&Pr oduct_ID=981
- Free Podcasts Instructional Series
 - http://www.esri.com/news/podcasts/

Network Analyst Technical Workshops – Tuesday

- Network Analyst An Introduction
- 8:30AM~9:45AM Room 3
- Network Analyst Performing Network Analysis
- 10:15AM~11:30PM Room 3
- Performing Network Analysis with ArcGIS Server
- 3:15PM~4:30PM Room 3
- What is ArcGIS Network Analyst and Why Should I Use It?
- 4:05PM~4:25PM Room 6B

Network Analyst Technical Workshops – Wed/Thu

- Network Analyst Automating Workflows
- Wednesday 8:30AM~9:45AM Room 9
- Network Analyst An Introduction (Offering II)
- Wednesday 1:30PM~2:45PM Room 9

- Network Analyst Performing Network Analysis (Offering II)
- Thursday 8:30AM~9:45AM Room 9

Network Analyst Demo Theater Presentations

- Modeling Real-World Problems with the VRP Solver
- Tuesday 1:00PM~2:00PM Spatial Analysis Island

- Routing Inside Buildings with 3D Networks
- Wednesday 3:00PM~4:00PM Spatial Analysis Island
- Location-Allocation and Accounting for competition in site selection
- Wednesday 4:00PM~5:00PM Spatial Analysis Island

Thank you for attending!

- Please complete the Session Evaluation:
- http://www.esri.com/sessionevals/
- Questions?

