
Esri International User Conference | San Diego, CAEsri Internationa
Technical Workshops |

Python – Getting Started
Drew Flater, Ghislain Prince

July 12 - July 14, 2011

Does this describe you?

• New to Python scripting

• Comfortable using ArcGIS but want to become
more efficient

• Moving to Python from other scripting language

• Interested in what’s new in ArcGIS 10

Agenda

• Python scripting essentials
- Why use Python scripting?
- Python 101
- What is ArcPy?
- Executing geoprocessing tools
- Messages and error handling

• Geoprocessing tasks
- ArcPy functions
- Batch processing
- Receiving arguments

Python Scripting Essentials

Why use Python scripting?
• Scripting language of ArcGIS

• Free, cross-platform, easy to
learn, great community

• But why? Other ways to run
tools

• Develop, execute, and share
geoprocessing workflows

• Improve productivity

Python 101
• Where do I write Python code?

- IDE like PythonWin; Python window in ArcGIS

• Which lines will run?

• What are variables?
- A name that stores a value; assigned using =

I am a comment, I will not execute
import arcpy

input = "C:/Data/Roads.shp"

distance = 50

both = [input, distance]

Variables act as substitutes for raw values

arcpy.Buffer_analysis(input, "Roads_buffer.shp", distance)

Python 101

• Python has logic for testing conditions
- if, else statement
- Colon at end of each condition
- Indentation determines what is executed
- == tests equality; other operators like >, <, !=

var = "a"

if var == "a":

Execute indented lines

print "variable is a"

else:
print "variable is not a"

Python 101
• Techniques for iterating or looping

- While loops, counted loops, list loops
- Colon at end of statement
- Indentation determines what is executed

x = 1

while x < 5:

print x

x = x + 1

for num in range(1,5):

print num

x = [1, 2, 3, 4]

for num in x:

print num

Python 101
• Case sensitivity

- Variables, functions, etc. are case sensitive
- name ‘X’ is not defined, function ‘X’ does not exist

• For paths, use forward-slash as separator
"C:/Data/Roads.shp"

• Functions & Modules
- Function: a defined piece of functionality that performs

a specific task; requires arguments ()
- Module: a Python file where functions live; imported
- math.sqrt(100) … 10.0
- “There’s a module for that”

ArcPy

• The access point to geoprocessing tools

• A package of functions, classes and modules, all
related to scripting in ArcGIS

- Functions that enhance geoprocessing workflows
(ListFeatureClasses, Describe, SearchCursor, etc)

- Classes that can be used to create complex objects
(SpatialReference, FieldMap objects)

- Modules that provide additional functionality
(Mapping, SpatialAnalyst modules)

• Builds on arcgisscripting module (pre-10.0)

ArcGIS Python window

• Embedded, interactive Python window within
ArcGIS

- Access to ArcPy, any Python functionality

• Great for experimenting with Python and
learning tool syntax

Demo

Executing a tool in Python

Executing a tool in Python

• ArcPy must be imported
• Follow syntax: arcpy.toolname_toolboxalias()
• Enter input and output parameters

Import ArcPy

import arcpy

Set workspace environment

arcpy.env.workspace = "C:/Data"

Execute Geoprocessing tool

arcpy.Buffer_analysis("Roads.shp", "Roads_buffer.shp",
"50 Meters")

Getting tool syntax

• Results window, ‘Copy as Python Snippet’

• Tool documentation

• Export Model to Python script

• Drag tool into Python window

• arcpy.Usage(“Buffer_analysis”)

Setting environments in Python

• Accessed from arcpy.env

• Provides finer control of tool execution; makes
scripting easier

• Common environments:
- Workspace, coordinate system, extent

arcpy.env.workspace = "C:/Data"

arcpy.env.extent = "0 0 100 100"

Geoprocessing messages

• Tools return three types of messages:
- Informative messages
- Warning messages
- Error messages

• Displayed in the ArcGIS Python window

• arcpy.GetMessages()
- GetMessages(): All messages
- GetMessages(0): Only informative messages
- GetMessages(1): Only warning messages
- GetMessages(2): Only error messages

Execute Geoprocessing tool

arcpy.Buffer_analysis("Roads.shp", "Roads_buffer.shp",
"50 Meters")

Print the execution messages

print arcpy.GetMessages()

>>>

Executing: Buffer Roads.shp Roads_buffer.shp '50 Meters'
Start Time: Tue July 12 08:52:40 2011
Executing (Buffer) successfully.
End Time: Tue July 12 03:52:45 2011(Elapsed Time: 5.00…

arcpy.GetMessages

Error handling basics

• Why do errors occur?
- Incorrect tool use
- Typos
- Syntax errors

• Python error handling
- Try…Except…

try:
Pass Go

except:
Do not Pass Go, Do not Collect $200

Try, Except Statement

Start Try block

try:
arcpy.Buffer_analysis("Roads.shp", "Roads_buffer.shp",
“50 Meters”)

If an error occurs

except:
Print that Buffer failed and why

print "Buffer failed"
print arcpy.GetMessages(2))

Demo

Error handling & messaging

ArcPy Functions

ArcPy functions

• Perform useful scripting tasks
- Print messages (GetMessages)
- List data to aid batch

processing
(ListFeatureClasses, 12 total
List functions)

- Getting data properties
(Describe)

- Etc.

• Supports automation
of manual tasks

Batch processing

• Run a geoprocessing operation multiple times with
some automation

- Example: Using the Clip tool to clip every feature class
in a workspace to a boundary

• List functions used in Python
to perform batch processing

arcpy.ListFeatureClasses

Set the workspace
arcpy.env.workspace = "C:/Data/FileGDB.gdb/FDs"

Get a list of all feature classes
fcList = arcpy.ListFeatureClasses()

Print the list of feature classes one at a time
for fc in fcList:

print fc

Demo

Batch Processing

ArcPy functions -- Describe
• Use the Describe function to read data properties

- Returns an object with properties

Describe a feature class
desc = arcpy.Describe("C:/Data/Roads.shp")

print desc.shapeType
>>> "Polyline"

• Allows script to determine properties of data
- Data type (shapefile, coverage, network dataset, etc.)
- Shape type (point, polygon, line, etc.)
- Spatial reference
- Etc.

Receiving arguments
• Arguments are user-defined inputs to a script

- Values passed to script from user, instead of hard-coded

• Use GetParameterAsText to read arguments

• Connect script to an ArcGIS script tool
- Best way to create and share custom workflows
- More accessible than stand-alone Python script

Create variables from input arguments
inputFC = arcpy.GetParameterAsText(0)
outputFC = arcpy.GetParameterAsText(1)

First and third parameters come from arguments
arcpy.Clip_analysis(inputFC, "C:/Data/boundary.shp", outputFC)

Demo

Describe function & Arguments

Python scripting resources
• ArcGIS Resource Centers

- resources.arcgis.com
- Online documentation
- Geoprocessing: script gallery,

blog, tutorials, presentations

• Python Organization
- python.org

• Python Reference Books
- Learning Python by Lutz, et al
- Core Python Programming by

Chun

Esri Training for Python
esri.com/training

• Instructor-Led Course
- Introduction to Geoprocessing Scripts Using Python

• Web Course (free)
- Using Python in ArcGIS Desktop 10

