Esri International User Conference | San Diego, CA
Technical Workshops |

Building tools with Python

Dale Honeycutt

Session dé_é:cription — Building Tools with Python

A geoprocessing tool does three pieces of work: it defines
its parameters, validates its parameters, and executes some
code that performs the actual work. This session will focus
on the first two pieces—parameters and validation. At the
end of this session, you will know how to define parameters
using data types, direction, filters, dependencies, and
multivalues. You will also gain understanding of how a tool
validates its parameters and describes its output for use in
ModelBuilder. Armed with this knowledge, you'll be able to
design and build a tool that is robust and useful regardless
of what programming language you use for implementation.
All concepts will be demonstrated by implementing Python
script tools.

Session Evaluations

« WWW.Eesri.com/sessionevals

Macros versus Tools

- Geoprocessing = Computing with geographic data

- quickly and easily turn your ideas into repeatable
workflows (software)

- Two basic software types: macro and tool

- A macro is tied to a specific set of data

- A layer with a particular name (“Streets”), geometry type
(lines), fields (“CFCC”, “Meters”)

- In order to work on another set of data, either the macro
code or data must be changed

- A tool parameterizes data
- Itis not hard-coded to a particular set of data
- Handles incorrect data gracefully

Macros a_h'a_tools In ArcGIS

- YOU can create macros with:
- ModelBuilder
- Python Window

- You can create tools with:
- ModelBuilder
- Python Scripts
- ArcObjects

- Tools that you create are called custom tools
- ...and are found in custom toolboxes that you create

Tool types and categories

Description

Built in tool. These tools are built using ArcUbje:
compiied programmng languoage ke NET.

Model tool. These fonls are created using ModelRonlder,

Leript tanl. These tonla are rreated vsing the Senpk Fanl wizard
and run a scnpt hle on disk, such as a Python kle (Lpy), &ML hile
(.aml), or executable {.=sxe Or .pat).

Spedalized tool. These tools are rare - they are built by 5y
developers and have their own unique user interface for LHIF"I:I
the tool, The &GS Data Interoperatulity extension confams
spacialized

E:]l:ﬂﬂﬂ Description
pols are those tools budt an crod by ESRI Thoy
=d I:'-. Bre v af its 50N progucts.
:ulrn-u'ir All system £ are bonlt-en By |.'||IT vl wll also hind
gysbam Lools thatl are scrph o moded bogls, For exampla, the
Hial stanstcs tools arc all sonipt tools, but since th i
built and delivered by ESRL, they are considered system tools.

Cuistom Cuskam taols are bl by you. Thess are mast atten senpt ar
> model t they can be bualk- : well. There are
{ load custom

I':r-_-r.tr-_-r Vil Cary 3' 55 t"ll- |1|-|||:|r CEssInNg RS

-

Getting help

Help system topics

Everythin_g_Shown today Is discussed in the doc

- This illustration is
the 10.0 doc

- Applies to 9.3 as
well

- See 9.3 doc for use
of arcgisscripting
Versus arcpy

Documentation

Professinnal |ikrary
YWhat's in the Protessional Library
Data Management

Mapping and visualization

B0processin q'

What i qeoprocessing

A guick tour ot gooprocossing

Fesmntial groprocessing vorabulary

GrOprocEssing fonls

he qaoprocecsing framework
Commonly usod tools
Finding tools
Execuling Luuls
Managing tools and toolboxas
Sharning tools

Geoprocessing willbn ModelBonldee

"W site package

roCessing environimeant Setiings

rocascing tool referance

- 10.0 doc again —
these books will
help you when
building script
tools

T
Demo: Script tool basics

Adding a script tool

Demo review'— Table to html

- GetParameterAsText(index)
- How parameters are received by the script

- Add Script Tool Wizard
- Properties can be updated later using Properties dialog

- Parameters
- Label
- Data Type
- Direction (input, output, derived)
- Required vs. Optional
- Filters

Demo — Table to htm! with field choices

- Field data type — setting Obtained From

- MultiValues are passed to script as a semi-colon
delimited string

- “aaa;bbb;ccc;ddd”
- Tranform to python list with:
- mylist = string.split(*;”)
- Fields = arcpy.GetParameterAsText(1).split(“;”)

Parameter filters

: A list of string or numeric values. Used with String, Long,

Value List
Double, and Boolean parameter data types.

A minimum and maximum value. Used with Long and

Range
Double data types.

A list of allowable feature class types: Point, Multipoint,

Feature Polyline, Polygon, MultiPatch, Sphere, Annotation,

Class Dimension. More than one value can be supplied to the
filter.

File A list of file suffixes. Example: "txt; e00; ditamap".

A list of allowable field types: Short, Long, Single,

Field Double, Text, Date, OID, Geometry, Blob, Raster, .GUID,
GloballD, XML. More than one value can be supplied to
the filter.

A list of allowable workspace types: File System, Local

Workspace |Database, Remote Database. More than one value can
be supplied.

T
Demo: Keywords and Booleans

Demo review

- Keywords:
- A Value List filter on a string parameter
- Keywords should be UPPER case, no spaces

- Booleans:
- always have two keywords
- The True keyword is listed first, False keyword second
- In scripting, you can either pass
- The keywords
- Python True or False
- Always received as string

- Be sure to supply a default value

R ———

Data types

Data type_s'_'

- Core concept of GP

- Every data type has:
- A Ul control
- Built-in validation logic
- Two basic types
- Datasets
- Scalar (numbers, strings, simple structures)

- Datasets have corresponding data elements
- Properties accessed using Describe
- Lightweight descriptions of the dataset
- Fields, extent, spatial reference, etc.

Common data types

- Layers (i.e. Feature Layer, Raster Layer, etc)

- Allows user to pick a layer from the TOC, a dataset on
disk, or a .lyr file on disk

- Cursors will only return selected features in the layer

- Table View

- Anything represented as a table (Feature Layer, Joined
tables, tables on disk, etc)

- Cursors will only return selected rows (or features) in
the table

- Long, Double, String, etc.
- Workspace, folder, file, text file

Data types continued

- All data types have a string representation

- In ArcObjects, the GPDataType object has a GetAsText()
and SetAsText() method

- Some data types have a horrid string representation

- Spatial Reference, Field Map
- Use arcpy objects to manipulate these

- What data type to use?
- Find a tool similar to what you want to do
- Tool reference page lists the data type
- Experiment in ModelBuilder
- See Data types for geoprocessing tool parameters

T
Demo: Exploring data types

Data typé_s_é_- review

- Use Create Variable in ModelBuilder to explore the Ul
of a data type

- Any data type can be made into a multiple value —
doesn’t always make sense.

- Composite data types (“field or value™) can only be
created in ArcObjects

- Feature Set (and Record Set) for interactive entry of
features or table rows

R —
Derived output

All tools MUST have output

- ModelBuilder —tool’s output is used as input to
another tool

- Two types of output:
- Required : user specifies the output dataset
- Derived:
- No output dataset (a number)

- Modification of input
- Output dataset determined by the tool

Derived data

- The output parameter is set to Derived
- Optionally, Obtained From is set

- Examples of derived output:
- Get Count : output = a number
- Calculate Field : output = exact copy of input
- Add Field : output = exact copy of input + a new field

- Create Feature Class : new output as defined by inputs
(workspace, name, schema)

T —
Demo: Derived output

Demo review: Scalar values

- All scalar values (numbers, text, etc) are derived
- example: Get Count

- In script tool wizard, set output to Derived

- Must use setParameterAsText() or SetParameter() in
your executable

Demo review — Output same as input

- Example: Calculate Field

- In script tool wizard, set output to Derived and
Obtained From to the input parameter

- SetParameterAsText() not needed
- But good habit to do anyway

Demo review — Modify input schema

- Example: Add Field

- In script tool wizard, set output to Derived and
Obtained From to the input parameter

- In ToolValidator (coming up next), you’ll modify the
output schema to contain the new field

- SetParameterAsText() not needed
- But good habit to do anyway

Demo review — new output

- Example: Create Feature Class

- In script tool wizard, set output to Derived, Obtained
From is blank (empty)

- Optionally, set the schema in ToolValidator (coming
up next)

- Use SetParameterAsText() in your executable

T ————
Validation

Programming the ToolValidator class

Validation is everything that happens...

- Before the OK button is pushed

Paramete_r_p_roperties provide basic validation

Have all the required parameters been supplied?

Are the values of the appropriate data types?

Does the input or output exist?

- If output exists and OverwriteOutputs is false, throw
error, throw warning otherwise

Do values match their filter?

Full validation

Inpit File

Fib= Formak type If MNEW_FORMAT is chosen...

Feature type in file
AOINT

Polygon to Raster

WITH_ARNNO Input Featuras
| Ez\Diatal rata|Examphs. gdblLakes

Wahse Fiekd

The default cellsize is calculated
from the ent of the Input

Celsize {optional) Features parameter
0.00019

| [

Full validation (continued.

.i.put Rastar Datacel
Error message on the tool dialog (£ A0t alficctatal

CELL_CENTER|

Prioriba Sl aptional)

Field Scale (optional)

s Finld Length {opbional

)

e wWindows

t Time (optional)

¥ 1 Accumulators

- e "window
¥ 3 Hierarchy 3 " with a collection of
parameters

b
¥ 2 Restrictions

¥ 4 Output options

Full

validation (continued...)

>
Multi-Distance
Spatial Cluster
Analysis (Ripleys K Statislics
Function) ., -

_P Summary Statistics

Input Table

even before the script tool 5 run.

Output
Table

ToolValidator Class

- Introduced at 9.3
- A Python class that you program

- Allows full control of dialog
- Better Ul, validating relationships between parameters,
messaging
- Allows you to fully describe outputs for chaining in
ModelBuilder
- Through the use of a schema object

- This is where you define the schema (fields, etc) of
derived outputs

Tool Validator Class

Gerl;lfdl Sowce | Paameters Valdatation | Help

clags ToolValidator:

- initializeParameters() — | TThing 0 voo1's parsmecer vaiues

the behavior of the tool's dialog. """

W h en ever a tO O | ’ S é":*'.‘f-i{rt' and che lisc of cool

iRpOrt Arcgisscripting as ARC

S|g natu re |S req UeSted Soelest O LR ea ek Default ToolValidator class

self . params = self GP.getparameterinfo() an I:I rI_IEﬂ-I 0 Ij'-'

datf initializeParasecers(sell):

- = ool 'f pArARSTErd
called when the ool is opened.*""
return

- updateParameters() — | _
called whenever a | B been changed. -

return

parameter value is
e s aatad by].I:',.T!-'l':t'!"ii.l.].. vali #
C h an g ed i-::::.:t-l::. This meéthod i® called after internd I:.lldr thE Eljlt tll_lttl:lrl

to open the Python
editor.

operties ol pPAramecd
Thiz mechod iz called

- updateMessages() —
called after
u p d ate Param eters () When finished editing, click OK or Apply to replace the current

Toolalidator code with your edited code.

T
Demo: controlling the Ul

Demo review -- Basic ToolValidator

- The basics of editing a ToolValidator class
- Setting up keyword lists, categories

- Dynamic update of keyword lists

- Keyword list changes based on values in another
parameter

- (The kind of stuff basic validation cannot do)

- See documentation — Customizing script tool
behavior

Internal validation — called after updateParameters()

1.

If arequired parameter is empty, post the "Value is
required" message to the tool dialog (green dot)

Check that the value the user entered is of the right
type.
Check filter membership.

Check existence of input datasets
Generate a default catalog path for output datasets.

Update the description of the output data based on a set
of rules contained in a special object called a Schema.

Check existence of output datasets against the
Overwriteoutputs environment setting.

But wait! _'I"_h_ere’s more!

10.

11.

12.

If the parameter is a Field data type, check that the field
exists on the associated table.

Check that the output dataset isn't the same as the input
dataset (unless the output is derived)

For parameters containing linear and areal unit data
types, set their default values by examining the
corresponding values in ArcMap

If the output is a coverage, grid, or INFO table, check the
13 character file name limit for these datasets.

What inte_r'ﬁél validation doesn’t do

- Update filters based on interaction with other
parameters

Enable/Disable parameters
Calculate default values

Perform any tool-specific parameter interaction

No custom error/warning messages

Parameter states: Altered &
HasBeenValidated

param eter.altered

- Once the user specifies a value for a parameter, it is
altered and remains altered forever

- ...unless the user empties (blanks out) the parameter

- Once a parameter has been altered by a user, you
should never reset its value

param eter.hasBeenValidated

- hasBeenValidated is true if the user has changed the
value since the last time updateParameters() was
called.

T —————

Describing the output

Using the schema object

Describing the output

. - Calculate
Add Fiel .
dd Field e{ e

Add Field # Calculate Field

Input Table Input Takls

Sarks Sarks (2)

Field hame y Field Name
TrackingiD
Id
FieldType % dfd
LORG il
Shape_Length
Field Preckon (optionsal) Shape Gras

TrackinglDx

In ModelBuilder, Add Field updates the description of its output to contain the new field
"TrackingID". The Calculate Field tool 'sees’ this field, even though Add Field hasn't executed yet.

Describing—the output

3 Name: E:\data\sample.gdb\buildings_dip
description of its output data.

Extent: (intersection of Buildings and StudyArea)

Folygon to
Raster

The Polygon to Raster tool calcul

ates
the default cellsize based on the extent
calculated by the Clip tool.

Demo — Up_dating the description of the output

- Tool takes a line feature class and produces a new

point feature class containing the endpoints and
midpoints of each line

- Output
- Point feature class
- All the same attributes as the input

- Additional field named STATUS with these values:
- 0 =from point
- 1 =mid point
- 2=end point

- Roughly the same spatial extent

T
Demo: updating output schema

Demo review

» Output datasets have a schema object that describes
the dataset

- You set up rules on how you want to construct the
output dataset description
- We used fieldsRule = “All”
- Parameter dependencies declare the initial schema
of the output
- You apply rules to the schema
- Feature/Geometry type
- Extent
- AdditionalFields

Schema object methods (rules)

Praparty nams

type

clone
featureTypeRule
featuralypea

geometry TypeRiyle

gaometryType

extentRule
extent
fieldsRule
additionalFiekls
callSizeRule

cellsize
rasterRule

rasterFormatRule

additionalChildren

Walue(s)

String: "Feature” "Table” "Raster” "Container” (for workspaces and feature
datasets). (Read-only property)

Boolean

String: "AsSpecified”, "FirstDependency”

String: "Simple”, "Annctation”, "Dimension”

String: "Unknawn”, FirstDepandency”, "Min”, "Max", "AsSpecified”

String: "Point”, "Multipoint”, "Polyline” “Palygon”
String: "AsSpecified”, "THirstDeapendency”, "Intersaction, "Union’, "Environment”

Extent object

String: "None”, "FirstDependency”, "FirstDependencyFIDsOnly™, "All",
“AllNeFIDs", "AllFIDsCnly"™

Fython list of field objects
String: "AsSpecified”, "FirstDependency”, "Min”, "Max”, "Environmeant”

double
String: “HirstDependency”, "Min™, "Max", "Integer”, 'Float”

String: "Img”, "Grid"

Fython hist of datasets to add to a workspace schema.

The validatioh flow of control is as follows:

When the tool dialog is first opened, initializeParameters() is
called. You set up the static rules (rules that don't change based
on user input) for describing the output. No output description
IS created at this time since the user hasn't specified values for
any of the parameters (unless you've provided default values).

Once the user interacts with the tool dialog in any way,
updateParameters() is called.

updateParameters() modifies the schema object to account
for properties that can't be determined from the parameter
dependencies (such as adding a new field).

After returning from updateParameters(), the internal validation
routines are called and the rules found in the schema object are
applied to update the description of the output data.

updateMessages() is then called. No changes to the schema can
be made here (output description has already been updated).

e ————
Tool characteristics

What makes a good tool?

Functionél_decomposition

- A tool does one elemental operation well

- Use ModelBuilder to sequence tools into a workflow
(compose functionality)

A tool must have output

- In order to work in ModelBuilder, a tool MUST HAVE
OUTPUT

- Even ifitis just a Boolean pass/fail
- See, for example, the Delete tool

ToolvaHdaﬂdn

- A tool validates itself
- Checks and updates values, repaints Ul, messages

- Uses data elements (descriptions of data) rather than
opening datasets

- Basic validation (w/o using tool validator)
- Advanced validation (using tool validator)

- A tool describes its output

- Prior to execution, creates an output data element
- For ModelBuilder chaining

Parameter naming

- “Input Features” not “Input feature class or layer”
- “Dataset” means user will browse to disk, not use layer
- All initial caps

- Label —what shows up in tool dialog (has spaces)

- Name — what shows up in scripting syntax
- label with underscores instead of spaces

- You cannot control the name — it’s always the label
minus the spaces

Parameter ordering

- Parameter ordering:
1. Required input datasets
Required output datasets
Required modifiers

2
3

4. Optional inputs
5. Optional modifiers
6. Optional outputs
.

Derived outputs

- Once a tool is released, you cannot insert parameters or
change parameter order
You can put an optional parameter at the end

- Tools built with ArcObjects can have different ordering
for dialog vs. scripting

Keywordé_

- Keywords should be upper case, no spaces, no
special characters other than underscore

- “INVERSE_DISTANCE”, not “Inverse distance”
- Keywords are never localized into another language

- Provide default values for keywords and Booleans

Foregrou_h'a_versus Background processing

- Background processing new in 10.0

- Tools running in background have no knowledge of
layers that are not tool parameters
- In order for your tool to run in background:
- All layers used by your tool must be parameters

- (You can use any dataset or .lyr file because these
reside on disk, not in the application like layers in the
TOC)

Em beddiﬁg_code

- Once you've finished developing your script, you
can embed it with the toolbox

- New at 10.0
- Right click script tool and select “Import Script...”

- You can password protect the script so that no one can
export it

Debugging script code

Geoprocessing | Custormize Windows
“o Buffer
l::|5_|

Intorsoct

o

ar

kY

Liriion Molification 3

Morge fppear For how kong (seconds)

®

Sonipt Towod Eelibar I|r-.a-h. e

kY

Dizsolve
Seoch For Took: Ed#tor: C:AProgram File<iWing IDE 2.1 |bnlwing. axce
ArcToolbow . : R arm T .

Deshiiger: o Progran FilssiWing IDE 1.1 jhinwing. sos
Erwironments

Rosults

(ol
&
4

=]

Made B ildar :..::::LI:-T* rhing alements, display valid paramet ars when mare Hhan ane is

15

Pytho
bl cule i .8 il = ! e R

e —

GEoproCessing Resour e Cenbor

LEoproceasing Uptionds...

For 9.3, see blog post Tips and Tricks — Debugging Python script tools

Adding o_t_Jt_ﬁuts to map display

- Suppose that within your script you use the Buffer
{e]o]

- You want the output of the Buffer tool to be shown in
ArcMap

- You will need a script parameter (output parameter)
to hold the results of buffer

- If you want the output to be derived (the buffers
“auto-magically” appear w/o the user entering the
output pathname)

- Create a derived output parameter

- In your script, use SetParameterAsText() to set the
pathname to the output of buffer

Coming at 10.1 — Python toolboxes

- A Python Class that you implement

- Everything needed is in the class:
- Tool names, labels
- isLicensed property
- Parameter definitions
- Validation
- Execution

Session Evaluations

« WWW.Eesri.com/sessionevals

S —————
Questions?

o 2
& eSrl

