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Answering “Why?” Questions

- Introduction to Regression Analysis

- Why are people dying young in South Dakota?

- Building a properly specified
OLS model

- The 6 things you must check!
- Exploring regional variation

using GWR

Kindly complete a course evaluation:
WWW.esri.com/sessionevals
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What can you do with Regression analysis?

- Model, examine, and explore spatial relationships
- Better understand the factors behind observed spatial patterns

- Predict outcomes based on that understanding

Ordinary Least Square Geographically Weighted
(OLS) Regression (GWR)
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What's the big deal?

- Pattern analysis (without regression):

- Are there places where people persistently die young?
- Where are test scores consistently high?
- Where are 911 emergency call hot spots?




What's the big deal?

- Pattern analysis (without regression):

- Are there places where people persistently die young?
- Where are test scores consistently high?
- Where are 911 emergency call hot spots?

- Regression analysis:
- Why are people persistently dying young?
- What factors contribute to consistently high test scores?
- Which variables effectively predict 911 emergency call volumes?



Why use regression?

- Understand key factors

- What are the most important habitat
characteristics for an endangered
bird?

- Predict unknown values

- How much rainfall will occur in a
given location?

- Test hypotheses

- “Broken Window” Theory: Is there a
positive relationship between
vandalism and residential burglary?




Regression analysis terms and concepts
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- Dependent variable (Y): What you are trying to model or predict (e.g.,
residential burglary).

- Explanatory variables (X): Variables you believe cause or explain the
dependent variable (e.g., income, vandalism, number of households).

- Coefficients (3): Values, computed by the regression tool, reflecting the
relationship between explanatory variables and the dependent variable.

- Residuals (¢): The portion of the dependent variable that isn’t explained
by the model; the model under- and over-predictions.



Regression model coefficients

- Coefficient sign (+/-) and magnitude reflect each explanatory
variable’s relationship to the dependent variable
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OLS Regression

l Why are people dying young
‘ ‘ in South Dakota?




OLS analysis

Why are people dying
young in South Dakota?

Do economic factors
explain this spatial pattern?

Poverty rates explain 66% of the variation in the average age of death
dependent variable: Adjusted R-Squared [2]: 0.659

However, significant spatial autocorrelation among model residuals
indicates important explanatory variables are missing from the model.



Build a multivariate regression model

- Explore variable relationships using the scatterplot matrix

- Consult theory and field experts

- Look for spatial variables

Esgiiwiny Avevatr Bge ol Death [
Eaploring Average Age of Death

« Run OLS (this is iterative)

- Use Exploratory Regression
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Our best OLS model

- Average Age of Death as a function of:
- Poverty Rates
- Vehicle Accidents
- Lung Cancer
- Suicide
- Diabetes

- This model tells 86% of the story... and the over and under
predictions aren’t clustered!

But are we done?



Check OLS results

1 Coefficients have the expected sign. v
2 No redundancy among explanatory variables. v
3 Coefficients are statistically significant. v

4 Residuals are normally distributed. +

<+«—— 5 Residuals are not spatially autocorrelated. | v

6 Strong Adjusted R-Square value. v




1. Coefficient signs

- Coefficients should have the expected signs.
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2. Coefficient significance

- Look for statistically significant explanatory variables.

Probability

0.000000 *
0.000000 *
0.000000 *
0.000172 *
0.017044 *
0.000134 *

Robust_Prob

0.000000 *
0.000000 *
0.000011 *
0.000732 *
0.025148 *
0.000692 *

Koenker(BP) Statistic [5]: 38.994033 Prob(>chi-squared) (5) degrees of freedom: 0.000626 *



Check for variable redundancy

- Multicollinearity:

- Term used to describe the phenomenon when two or
more of the variables in your model are highly
correlated.

- Variance inflation factor (VIF):
- Detects the severity of multicollinearity.

- Explanatory variables with a VIF greater than 7.5 should
be removed one by one.



3. Multicollinearity

- Find a set of explanatory variables that have low VIF values.

- In a strong model, each explanatory variable gets at a
different facet of the dependent variable.
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Checking for model bias

- The residuals of a good model should be normally
distributed with a mean of zero

- The Jarque-Bera test checks model bias

Frequency Distribution




4. Model bias

- When the Jarque-Bera test is statistically significant:
- The model is biased
- Results are not reliable

- Often indicates that a key variable is missing from the model

[6] Significant p-value indicates residuals deviate from a normal distribution.

v
Jaque-Bera Statistic [6]: 4.207198 Prob(>chi-sq), (2) degrees of freedom: 0.122017




5. Spatial Autocorrelation
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6. Model performance

- Compare models by looking for the lowest AIC value.

- As long as the dependent variable remains fixed, the AIC value
for different OLS/GWR models are comparable

- Look for a model with a high Adjusted R-Squared value.

[2] Measure of model fit/performance.

o Akaike’s Information Criterion (AIC) [2]: 524.9762
Adjusted R-Squared [2]: ] 0.8648




Online help is ... helpful!

The 6 checks:

u Coefficients have the expected sign.

u Coefficients are statistically significant.

i No redundancy among explanatory variables.
U Residuals are normally distributed.

U1 Residuals are not spatially autocorrelated.

U Strong Adjusted R-Squared value.



Now are we done?

- A statistically significant Koenker OLS diagnostic is often

evidence that Geographically Weighted Regresion (GWR)
will improve model results

- GWR allows you to explore geographic variation which can
help you tailor effective remediation efforts.
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Global vs. local regression models
. OLS

- Global regression model
- One equation, calibrated using data from all features
- Relationships are fixed

- GWR

- Local regression model

- One equation for every feature, calibrated using data from
nearby features

- Relationships are allowed to vary across the study area

Population Income
Fealure Class Fealure Class
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For each explanatory variable,
GWR creates a coefficient
surface showing you where
relationships are strongest.

Mopulation Income
Loeffickent Coefficient
Surflace Curface




GWR

Exploring regional
variation




Running GWR

- GWR is a local spatial regression
model

— Modeled relationships are allowed to
vary

- GWR variables are the same as
OLS, except:

— Do not include spatial regime (dummy)
variables

— Do not include variables with little value
variation

- Geographically Weighted. ..
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Defining local

- GWR constructs an equation
for each feature

- Coefficients are estimated
using nearby feature values

- GWR requires a definition for
nearby

- Geographically Weighted..
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Defining local T T TR

Irpek festhure clags

| M= Dakota Data
Dependend variabls

| Aovedicmth

Espdanat ory varkatse(s )

- GWR requires a definition for
nearby

— Kernel type

- Fixed: Nearby is determined by a
fixed distance band

- Adaptive: Nearby is determined by a
fixed number of neighbors

— Bandwidth method

- AIC or Cross Validation (CV): GWR will
find the optimal distance or optimal
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Interpreting GWR results

- Compare GWR R2 and AICc values to OLS R2 and AICc
values

- The better model has a IowerAIC and a high R2.
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- Model predictions, residuals, standard errors, coefficients,
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Mapped Output

- Residual maps show model
under- and over-predictions.
They shouldn’t be clustered.

- Coefficient maps show how
modeled relationships vary
across the study area.




Mapped Output

- Maps of Local R? values show
where the model is performing
best

- To see variation in model stability:
apply graduated color rendering
to Condition Numbers




-

Ve il gt B v

GWR prediction

Calibrate the GWR model using known
values for the dependent variable and all —s
of the explanatory variables.

Observed Modeled Predicted

Provide a feature class of prediction
locations containing values for all of the —
explanatory variables.

GWR will create an output feature class
with the computed predictions. \




Resources for learning more...

- Spatial Pattern Analysis: Mapping Trends and Clusters
- Tue 8:30 Rm 2; Wed 3:15 Rm 2

Modeling Spatial Relationships using Regression Analysis
- Tue 10:15Rm 2; Thu 1:30 Rm 1A/B

Spatial Statistics: Best Practices
- Tue 3:15 Rm 2; Thu 3:15 Rm 1A/B

Using R in ArcGIS
- Wed 12:00 Rm 1A/B

Road Ahead: Sharing of Analysis (ArcGIS 10.1)
- Wed 11:05 Rm 6B



Resources for learning more...

- ~d\ 00“}
ST e QUESTIONS?

. www.esriurl.com/spatialstats

- Short videos

- Articles and blogs

- Online documentation
- Supplementary model and script tools

- Hot Spot, Regression, and ModelBuilder tutorials

L Scott@Esri.com
L Rosenshein @Esri.com
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