

Esri International User Conference | San Diego, CA Technical Workshops | July 2011

Spatial Statistics: Best Practices

Lauren Rosenshein, MS

Lauren M. Scott, PhD

Workshop Objectives

- Demonstrate an analytical workflow, start to finish
 - 911 Emergency Call Data Analysis
- Dig deeper:
 - Understand tool parameter options
 - Select an appropriate spatial scale for your analysis
 - Explore data relationships
 - Find a properly specified regression model
- Point you to additional resources for learning more www.esriurl.com/spatialstats

Kindly complete a course evaluation: www.esri.com/sessionevals

Context for the Analysis

- Responding to 911 calls is expensive
- The population is expected to double
- This community has questions!
 - Are existing fire and police resources well sited?
 - What are the factors that contribute to high 911 call rates?
 - What can be done to reduce 911 call volumes?
 - Given population increases, what kinds of call volumes can we expect in the future?

Hot Spot Analysis

- Works by assessing the values for each feature within the context of neighboring feature values
- Challenges:
 - What is the analysis field?
 - With incident data, you often need to aggregate the data
 - What is the scale of your analysis?
- Tools:
 - To aggregate your data
 - Integrate
 - Collect Events
 - To find an appropriate scale of analysis
 - Incremental Spatial Autocorrelation (sample script at 10.0)
 - Calculate Distance Band from Neighbor Count

Regression Analysis

- All about answering "why?" questions
 - Ordinary Least Squares (OLS) creates an equation relating your dependent variable (calls) to a set of explanatory variables (population, income, ...)

Calls = f(Population?, Income?, Education Levels?, Traffic?, Businesses?)

- Challenge
 - Finding a "properly specified model" (a model you can trust ...because it meets all of the assumptions of OLS)
- Tool
 - Exploratory Regression

Did you find a good model?

- Check coefficient significance and sign
 - You want explanatory variables that are good predictors
 - Each explanatory variable coefficient should:
 - Have the expected sign (the expected relationship)
 - Have an asterisk (*) indicating the variable is statistically significant
- Check VIF values for Multicollinearity
 - You want a stable model: no explanatory variable redundancy
 - Variance Inflation Factor (VIF) values should be < 7.5
- Run the Spatial Autocorrelation tool on model residuals
 - You want to be able to trust variable relationships
 - Model over/under predictions should exhibit a random pattern

Did you find a good model?

- Check the Jarque-Bera diagnostic for model bias
 - You want your model to be consistent for the full range of values and throughout the study area
 - Model over/under predictions should be normally distributed
- Check model performance
 - You want a model that effectively explains 911 call volumes
 - Look for models with:
 - Largest Adjusted R² value
 - Smallest AICc value

The Wiggle Clause

- Exploratory Regression can help you find a properly specified OLS model
 - Tries every combination for a set of explanatory variables
- There is a trade-off:
 - You will learn a lot about your data and about relationships among your variables.
 - You increase your risk for Type I statistical error
 - More likely to get a model that over fits your data
- Best practices:
 - Select your variables carefully
 - Consult your common sense often
 - Validate your final model

Analysis Results

- Hot Spot Analysis: are fire and police stations located well?
- OLS: what are the key factors promoting 911 calls?
- GWR:
 - where might remediation be most effective?
 - what will call volumes be like in the future given the anticipated growth?
 - are remediation methods effective?

Resources for learning more...

- Spatial Pattern Analysis: Mapping Trends and Clusters
 - Tue 8:30 Rm 2; Wed 3:15 Rm 2
- Modeling Spatial Relationships using Regression Analysis
 - Tue 10:15 Rm 2; Thu 1:30 Rm 1A/B
- Spatial Statistics: Best Practices
 - Tue 3:15 Rm 2; Thu 3:15 Rm 1A/B
- Using R in ArcGIS
 - Wed 12:00 Rm 1A/B
- Road Ahead: Sharing of Analysis (ArcGIS 10.1)
 - Wed 11:05 Rm 6B

Resources for learning more...

QUESTIONS?

- www.esriurl.com/spatialstats
- Short videos
- Articles and blogs
- Online documentation
- Supplementary model and script tools
- Hot Spot, Regression, and ModelBuilder tutorials

LRosenshein@Esri.com LScott@Esri.com

Kindly complete a course evaluation: www.esri.com/sessionevals