Designing and Using Cached Map Services

Eric Rodenberg & Tom Shippee
What we will cover

• Session Topics
 - Map cache basics
 - Map cache workflows
 - Cache as a raster dataset
 - Caching imagery

We will answer questions at the end of the session
Why should I care about map caches?

- Performance, performance, performance
- Scalability: Industry standard
- Cartographic quality

- ArcGIS Explorer Online
Map cache basics
What is a map cache?

Cache tile

1:16000
1:8000
1:4000
1:2000
1:32000
1:16000
1:8000
1:4000
1:2000

Landbase
Hydrography
Transportation
How does a map cache work?

Client → ArcGIS Server → Dynamic map → Cached Map

- Render
- Label
- Project
Users expect map cache speed & quality

10 years ago
- Dynamic drawing
- Slow to render
- Compromised cartography

Today
- Cached maps
- Fast response
- Enhanced cartography
What should you cache?

- Base maps (always)

- Operational layers that satisfy one of the following:
 - High volumes of traffic
 - Don’t change often
 - Cover small scales only
What about optimized map services?

- Optimized drawing format
 - Based on MSD file
 - Enhanced map drawing engine
 - Use to generated map tiles faster

- Does NOT replace cache map service
 - Requires dynamic rendering
 - Web services are optimized for cached tiles
Map cache workflow
Building a map cache

1. Choose coordinate system and scales
2. Author and publish the map
3. Setup cache properties
4. Create tiles
Choosing coordinate system and scales

1. ArcGIS Online & Google Maps & Bing Maps
 - WGS 1984 Web Mercator (Auxiliary Sphere) coordinate system

2. Create your own
Overlaying with ArcGIS Online

• Project your map to WGS 1984 Web Mercator (Auxiliary Sphere)
 - Recommended choice
 - Works in all clients

• Project your map to WGS 1984 Web Mercator
 - Datum transformations more difficult this way
 - Won’t work in some clients (.NET ADF)
Creating your own scales

• Build just the scales you need
 - Determine closest scale (Raster resolution)
 - Divide scale by 2 for each subsequent scale
 - Adjust smallest scale to full extent

• Consider ArcGIS Online scales

Sample 10 level cache

<table>
<thead>
<tr>
<th>Level</th>
<th>Scale</th>
<th>Tiles</th>
<th>% of total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1:16,000,000</td>
<td>1</td>
<td>0.000%</td>
</tr>
<tr>
<td>2</td>
<td>1:8,000,000</td>
<td>4</td>
<td>0.001%</td>
</tr>
<tr>
<td>3</td>
<td>1:4,000,000</td>
<td>16</td>
<td>0.005%</td>
</tr>
<tr>
<td>4</td>
<td>1:2,000,000</td>
<td>64</td>
<td>0.018%</td>
</tr>
<tr>
<td>5</td>
<td>1:1,000,000</td>
<td>256</td>
<td>0.073%</td>
</tr>
<tr>
<td>6</td>
<td>1:500,000</td>
<td>1,024</td>
<td>0.293%</td>
</tr>
<tr>
<td>7</td>
<td>1:250,000</td>
<td>4,096</td>
<td>1.172%</td>
</tr>
<tr>
<td>8</td>
<td>1:125,000</td>
<td>16,384</td>
<td>4.688%</td>
</tr>
<tr>
<td>9</td>
<td>1:62,500</td>
<td>65,536</td>
<td>18.750%</td>
</tr>
<tr>
<td>10</td>
<td>1:31,250</td>
<td>262,144</td>
<td>75.000%</td>
</tr>
</tbody>
</table>

Final level is ~75% of the total
2 Author the map

- Design map for cache scales
 - Add tiling scheme scales ArcMap
 - ArcGIS Online / Bing Maps / Google Maps available
 - Only display these scales when zooming
- Group layers by scale level
 - Only have to set the scale range at the group layer level
 - Copy layers between groups
- ArcGIS Resource Center
Authoring labels for the map

- Individual tiles are cut from large area (supertile)
 - 4096 x 4096
 - 2048 x 2048 if using antialiasing
- Supertile necessary to
 - Reduce duplicate labeling
 - Reduce requests to map service when caching
- Labeling rules can repeat across super tile boundaries
 - Maplex places better labels
 - Annotation

Supertile
No antialiasing
4096x4096

Supertile antialiasing
2048x2048

512x512 tile size
256x256 tile size
ArcGIS Online / Bing / Google
3 Setup cache properties

- Time to build map cache
- Antialiasing
- Map quality
- Tile size
- Map service performance
- Image format
- Storage
- Size on disk
Tile size

- Pixel dimensions of each image
 - 256x256 is the web standard
 - 512 X 512 : legacy ArcGIS Online
 - Larger dimensions are faster to build, but tiles take longer to download
Choosing an image format

- Image format effects
 - Tile storage space requirements
 - Web application performance (speed and supported browsers)
 - Tile image quality and transparency
- JPEG
 - Great compression for many colors but not transparency
- PNG
 - Best compression for less colors
- Mixed

- JPEG
- PNG
Comparing image formats

<table>
<thead>
<tr>
<th>Output format</th>
<th>Transparency</th>
<th>Compression</th>
</tr>
</thead>
<tbody>
<tr>
<td>JPEG</td>
<td>No</td>
<td>Lossy (groups similar cell values)</td>
</tr>
<tr>
<td>Mixed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PNG-32</td>
<td>Yes</td>
<td>Lossless (groups same cell values)</td>
</tr>
</tbody>
</table>
Mixed mode image format

- Generates JPEG tiles unless transparent pixels detected
- If transparent pixels detected, creates PNG32
- Mashup basemaps with ArcGIS Online
- **Mixed Mode Caches**

Two overlapping map services
Mixed mode cache on top of a JPEG cache
Operational layers: Image format guidelines

- **PNG 8**
 - Small size on disk + transparency support
 - Not for imagery
 - Use MSD-based service + heavy testing if over 256 colors
- **PNG 32**
 - Over 256 colors
 - Good for vector overlays with antialiasing
 - Caution: Large tile sizes
- **(PNG 24)**
 - Avoid in Web apps (poor IE 6 support)
- **Solar Boston**
Example: Tiles are too large

Aerial photo and vector blend using PNG 32
When should I use antialiasing

- High quality line and label appearance on vector maps
- Web standard (Google, Bing, AGOL)
- Optimized map services preferred for antialiasing (speed and appearance)
Choose storage format

- **Compact**
 - Stores tiles in compact, continuous file streams ("bundles")
 - Maximum ~16,000 tiles per bundle
 - Faster copying
 - Smaller size on disk
- **Exploded**
 - Tiles stored as individual images on disk
 - Can access with other tools
 - Marginally faster than compact
 - 5%-8% in most cases
 - Much larger on disk / difficult to manage
Generate Tiles

- Manage Map Server Cache Tiles geoprocessing tool
 - Almost always use this in a model

- Allows spatial and scale constraints

- Can run multiple times to “target” creation of tiles
 - All tiles at small scales
 - Most important tiles at large scales
Cache as a raster dataset in ArcGIS

- ArcGIS Desktop
- Disconnected field work (compact format recommended)
- ArcGIS Mobile (use cache in mobile project)
Cache export tool

- Export tiles
 - Based on extent or polygon features
 - Convert storage format
 - Use for cache import or as a disconnected cache

Exported using Nevada and Utah state boundary features.
Cache import tool

- Import tiles
 - Based on extent or polygon features
 - Must have same storage format

Import from a previously exported map cache.
Collaborative caching

- Use export and import tools
 - Import the “best available” cache content
 - Esri Community Base Maps program
 - Session: Thursday, July 14 3:15 - 4:30 PM
 - Building the Community Map: Technical Tips and Best Practices

Pasadena City College Contribution
Caching imagery
When should you cache imagery?

Cached map service
- Base map display
- Optimal performance
- Maximum scalability

Dynamic image service
- On the fly processing
- Exact extent returned
- Always up-to-date

Server Blog: Should I use a map cache or image service?
Cached imagery workflow

- Prepare imagery
 - Build raster pyramids
 - Create mosaic dataset with overviews
- Author map document
 - Add imagery to map
 - Save as MSD
- Publish as a map service
- Create and manage the map cache
 - Configure cache definition
 - Generate cache tiles
 - Update cached tiles
Image resolution and cache scales

- Largest scale = raster resolution
 - Zoom to raster resolution
 - Factors of 2 to full extent

- Scale based on 96 DPI
 - Scale (ft) = (x/12) * 96
 - Scale (m) = (x/0.0254) * 96

| Cell size (m|ft) | Scale 1:X |
|--------------|-----------|
| 0.15 | 0.50 | 567 |
| 0.50 | 1.64 | 1,890 |
| 1.00 | 3.28 | 3,780 |
| 10.00 | 32.80 | 37,795 |
| 30.00 | 98.42 | 113,386 |
| 90.00 | 295.27 | 340,157 |
| 1,000.00 | 3,280.83 | 3,779,527 |
Choosing the best image format

- Large number of continuous colors
 - JPEG (start with quality = 55)
 - Mixed (if transparency required)

Which one looks better?

JPEG 90 – 2$KB
JPEG 90 – 30$KB
Using mixed mode for image overlay

JPEG = 3.06 MB

PNG-32 = 19.3 MB

Mixed = 6.07 MB

Disk space usage

Transparency

Best of both
Cache import for imagery

- Merge high resolution imagery into a base cache
- Seamless integration import feature boundary
Questions?

Please fill out a session survey...