

Esri International User Conference | San Diego, CA Technical Workshops |

Enterprise GIS Architecture Deployment

Danny Krouk Andrew Sakowicz

Agenda

Deployment options

- Introduction
- Application Architecture (Desktop, Web, Mobile)
- Infrastructure Architecture
 - Session/Application Virtualization
 - Hardware Virtualization
 - Cloud Computing and Deployments
- Quality Attributes
 - High Availability Patterns
 - Public-facing Application Security
 - Scalability
- Closing

Deployments

- Patterns of delivering GIS functionality
- The state of our knowledge
- Motivations and considerations

Desktop applications that operate in stand-alone, connected, and sometimes connected scenarios.

Browser-based applications that operate in connected scenarios and optionally leverage browser plug-ins.

Standards-based service interfaces that support external applications and systems.

Mobile

Mobile applications that operate in stand-alone, connected, and sometimes connected scenarios.

System Designer

- 1. GIS System/Solution Design
- 2. Calculate Capacity

Contribute . Same		Colores .	-	
A				
0.1.8.10	and and the other of the the	(here)	[in.mt]	
A	other mother 1 he	100.000	10.00	
	COLUMN TRANSPORT	100000	11,00	
1 8 8 8 8 8 8 8-	erder Heilfrer 3/34 Bet	1411	10.00	
	COLUMN STREET	and a second		- 1
				-
		-		
	20.00		allere ()	ie:
	-		a financial d	

AMI A

HardmateLDLNA) / \ EC2 2.00 Coves (3 3250.00 MHz

ArcGIS Server .NET 10.0

16.00 GB Software-

MI ArcGIS Server1

Application Architectures

ArcGIS Desktop

- Rich Client Pattern: <u>http://resources.arcgis.com/content/enterprisegis/</u> <u>10.0/rich_client_architecture</u>
- Full range of GIS tools.
- Significant client system requirements (hardware, network, and platform).
- Significant system administration support (installs, upgrades, versioning, etc.)

Demonstration

Desktop Deployment

ArcGIS Server Web Applications

- Web Application Pattern: <u>http://resources.arcgis.com/content/enterprisegis/</u> <u>10.0/web_app_architecture</u>
- Server-powered mapping, analysis, editing, etc.
- Minimal client system requirements.

Mobile

- Mobile Application Patterns: <u>http://resources.arcgis.com/content/enterprisegis/</u> <u>10.0/mobile_app_architecture</u>
- Enabling field-based data collection, situational awareness, and mobile GIS.
- A family of platform-specific solutions that leverage a common server-based infrastructure.
- Themes:
 - 1. Always vs. sometimes connected
 - 2. Sometimes connected:
 - a. Getting data on to the devices
 - b. Managing synchronization timing

Demonstration

ArcGIS Server and Mobile

Infrastructure Architectures

Session/Application Virtualization

- Allows Desktop application processing to execute on servers, exchanging graphics and commands with clients.
- Often motivated by easing system administration and support requirements for large deployments.

Customer Experiences and Motivations

- Simplified/Streamlined Administration
- Release control; Managing Upgrades
- WAN bandwidth and latency tolerance
- High availability for ArcGIS Desktop solutions
- Reduced client side requirements
- Specialized skill requirements for server administration and configurations to support printing, working with local data, etc.

Esri's Testing and Experience

1 14

- Scope of Esri Support
- Session/Application vs. Desktop Virtualization and VDI
- Graphics, printing, and 3D
- Resources:
 - <u>http://resources.arcgis.com/content/white-</u> papers?fa=viewPaper&PID=25&MetaID=389
 - <u>http://blogs.esri.com/Dev/blogs/enterprisegis/</u> <u>archive/2010/11/05/Citrix-HDX-RichGraphics-</u> <u>with-ArcGIS-Desktop.aspx</u>

Demonstration

ArcGIS Desktop Application/Session Virtualization

Server Hardware Virtualization

- Allows the division and/or recombination of one or more physical machines into 'virtual' machines
- Often motivated by costsavings (right-sizing, over-committing) and increased system administration flexibility.

SOURCE: Wikipedia

Processors

Right-sizing

Over-commitment

Storage

Storage Access

Networking

Esri's Testing and Experience

- Scope of Esri Support
- Scalability and Virtual Cores
- Right-sizing is good; over-committing should be avoided
- Implementation Risks:
 - Storage I/O contention
 - Network Latency
- Resources:
 - <u>http://downloads2.esri.com/support/whitepape</u> <u>rs/other_/ArcGISServer_Virtualization.pdf</u>

Customer Experience and Motivations

- IT Standards
- Availability
- Disaster Recovery
- Simplified/Streamlined Administration
- Other

Demonstration

ArcGIS Server Hardware Virtualization

Staging Environment

Purposes and Uses:

- User Acceptance Testing (UAT)
- Production Deployment Procedure
 Development and Testing
- Service Staging
- Recovery Procedure Development and Validation

Provisioning Patterns:
Hardware virtualization
Staging licensing
Training labs (for clients)

Development Environment

Purposes and Uses:Application developmentFunctional/Unit testing

Provisioning Patterns:Developer machinesEDN

Cloud Computing

- Provides hosted, usually off-premises, infrastructure, platform, and/or application services.
- Often motivated by scalability, deployment flexibility, and/or outsourcing objectives.

What is Cloud: laaS?

Infrastructure-as-a-Service (laaS)

- Provides virtual server instances
 - Configure virtual servers
 - Configure storage
 - Manage instances
- Examples:
 - Amazon Web Services

What is Cloud: PaaS?

Platform-as-a-service(PaaS)

- Set of APIs, services, and product development tools hosted on the provider's infrastructure.
- Developers create applications on the provider's platform over the Internet
- Examples:
 - Microsoft Azure, GoogleApps, Force.com

What is Cloud: SaaS?

Software-as-a-service(SaaS)

- Vendor supplies the hardware and software infrastructure ... whole applications
- Broad market
- Examples:
 - ArcGIS.com, bao.esri.com, Crimemapping.com, Salesforce.com

Customer Experiences and Motivations

- Dynamic, rapid scalability
- Tends to be for public-facing applications
- Outsourcing IT
- Esri Managed Services

Esri Testing and Experience

- Scope of Esri Support
- Processor Per-Core Capacity
- Design Challenges:
 - Network (Internet)
 - Bandwidth
 - Availability
 - Latency
 - Data
 - Can it really all be in the cloud?
 - Synchronization
 - Caching
 - Amazon Availability
 - Elastic Load Balancer
 - Availability Zones
- Resources:
 - <u>http://www.esri.com/amazon</u>

Demonstration

ArcGIS Server on Amazon

Hardware Dialog			12 - 17	
Site:		Server Role:		
Amazon East Zone 1		GIS_SVR		
Switch:		Hardware Vendor		
default sw	-	Amazon EC2 👻		
Select Hardware Item		[Cores] [SPEC int rate per Core] Hardwares		
Elastic Block Storage		[2] [7.00] Standard L 4 EC2 (2 x 2		
GIS_SVR		Processor Name:	Processor Spe	
		EC2	2000.00	
		SPEC int rate per Core:	SPEC int rate:	
		7.00	14.00	

Quality Attributes

a.k.a. "Non-Functional" Attributes

Server High Availability

- Provisioning systems to continue to operate in the case of component failure.
- Typical motivations are to avoid the loss of revenue (e.g. ecommerce), the loss productivity (e.g. idle workforce), or a mission-critical function (e.g. 911 service).

HA Objectives

Downtime: Planned and Unplanned

Hours of Operations •Standard Business Hours •24x7x365

- 37 days = 90% uptime
- 18 days = 95% uptime
- 7 days = 98% uptime
- 4 days = 99% uptime
- 1 day = 99.9% (aka "three nines") uptime
- 1 hour = 99.99% (aka "four nines") uptime

Redundancy Strategies

ArcGIS Server HA Techniques

"Bow-tie"

HA with Hardware Virtualization

State of Knowledge

- Esri's Testing and Experience
 - Scope of Esri Support
 - Multi-faceted Solutions
- Customer Experiences and Patterns
 - Broad and Deep Range
 - Data tier: Active-Passive
 - Services tiers: Active-Active or Active-Passive
 - Managing complexity

Server High Availability

- Resources:
 - <u>http://proceedings.esri.com/library/userconf/devsummit1</u>
 <u>0/tech/tech_12.html</u>
 - <u>http://www.esri.com/systemsint/kbase/docs/stratus-</u> server-testing.pdf
 - <u>http://www.esri.com/library/whitepapers/pdfs/arcgis-</u> server-high-capacity.pdf

Demonstration

ArcGIS Server High Availability

Securing Public Access to ArcGIS Server

- Providing solutions with appropriate access and reliability to the public without compromising internal systems.
- Many motivations including ecommerce, protecting private data, limiting public access, and/or protecting internal systems.

Reverse Proxy or DMZ placement

State of Knowledge with Esri Technology

- Esri's Testing and Experience
 - Scope of Esri Support
- Customer Experiences and Patterns
 - Reverse-Proxy Solutions
 - Separation of Concerns & DMZ
 - Token or Custom Authentication w/ HTTPS

Securing Public Access to ArcGIS Server

- Resources:
 - <u>http://resources.arcgis.com/content/enterprisegis/10.0/</u> <u>security</u>
 - <u>http://proceedings.esri.com/library/userconf/devsummit</u> <u>10/tech/tech_45.html</u>
 - <u>http://www.esri.com/library/whitepapers/pdfs/arcgis-</u> security.pdf
 - <u>http://help.arcgis.com/en/arcgisserver/10.0/help/arcgis</u> <u>_server_dotnet_help/index.html#/Ways_to_implement</u> <u>security_in_ArcGIS_Server/0093000000p6000000/</u>

Scalability

- Systems that perform at low throughputs and high throughputs
- Systems that have balanced resource allocation

Processor Bound

 Most well configured and tuned GIS systems are processor-bound in terms of performance and scalability.

State of Knowledge with Esri Technology

- Esri's Testing and Experience
 - Product Team Tests
 - Esri Enterprise Testing Benchmarks
 - Many white papers and reference implementations

http://resources.arcgis.com/gallery/file/enterprise-gis

Demonstration

Balanced Hardware and Network

- - -

Enhancing Desktop Deployment -- Infrastructure

- App/Session Virtualization
 - + High Availability
 - + Simplified Administration
 - + Network efficiency / WAN-3D
 - -System admin skill level
 - ~ User Experience

Enhancing Server Deployment -- Infrastructure

- Hardware Virtualization
 - + High Availability
 - + Disaster Recovery
 - + Right sizing
 - + Staging environment
 - Performance risk

Quality Attributes

- Vectors
 - High Availability
 - Scalability
 - Security
- Considerations
 - Multi-factor
 - Simplicity -> Success
 - Requires verification testing and monitoring

Thank you

Please evaluate this session: <u>www.esri.com/sessionevals</u>