

Esri International User Conference | San Diego, CA Technical Workshops | July 12, 2011

ArcGIS Server Performance and Scalability : Optimizing GIS Services

David Cordes, Eric Miller

Poll the Audience: Role

Raise your hand if you are

- A GIS Analyst
- A GIS Manager
- An IT person
- An IT manager
- A Developer
- An Executive
- None of the above

Agenda

Three case studies

- Planning for Optimization (David Cordes)
- Performance Testing (Eric Miller)
- Performance Troubleshooting (David Cordes)

Planning for Optimization

David Cordes

Planning Case Study: The Organization

- Fortune 500 Utility
- Maintaining massive infrastructure
 - Tens of thousands of sites
 - National scope
- Repair and maintenance decisions made locally
- Reduce costs
 - Respond to outages efficiently, minimize down-time
 - Keep technicians in the field utilized
 - Reduce hardware and software costs by moving from ArcIMS solution

Planning Case Study: The Goal

- Replace dispatch application
 - Centrally managed servers
 - For internal users distributed throughout country
 - Provide information:
 - Technician availability
 - Estimate arrival times for available technicians
 - Let dispatcher assign technician to job
 - Send job information to technician including directions, map

Planning Decisions

Planning decisions

- Go through the thought process behind decisions
- Understand the decisions made
- Understand how you can apply
- Your decisions may differ based on your priorities

Big Decisions

- System architecture
- Application design
- Functionality
- Resource Allocation

Legacy System Architecture

Initial System Architecture

Final System Architecture

Application Design

- IBM/Java shop
- Had existing Java web app for ArcIMS
- Initial approach use Java Web ADF
- Performance
 - Acceptable with few users
 - Not acceptable with hundreds
 - Caused by web server consolidation

•Options

- Add additional web servers with ADF
- Web APIs

Use Java components in stateless manner
Used Stateless Java Components

Functional Planning

Мар

- Cached
- Optimized
- Check out "Effective Map Service" session

Data

- Database, File Remote, File Local
 Indexing (database)
 Format (FGDB for file)

- Geoprocessing
 Local jobs directory

Functional Planning - Caching

Cached map

- Initially wasn't considered
- Performance

 - Huge impact on map time generation
 Moderate impact on overall transaction time
- Cost
 - Add labor cost
 - Subtract hardware/software costs
 - Overall: Slight reduction in cost, but not significant
- Decision to use caching

Request Time

- Network time
 - West Coast: 40ms
 - New York: 80ms
 - Hong Kong: 200ms
- SOAP handler: 10ms+ (depends on payload)
 - SOAP little faster than REST at 10
- SOM Queue Time
 - Requests are queued when all instances busy

Resource Allocation Planning

Context

- •16 CPUs available on machines
- 2 Services (cached map & network)
- Network Service
 - Planned on 32 instances
 - Performance horrible
 - •Too many instances
 - 16 instances optimal 75% reduction in time
- Cached Map Service
 - 0 or 1 instances? No.
 - Don't forget query, identify, re-sampling & info
 Ideal would be to have

Case: Performance Testing

Eric Miller

Overview

- What motivates the testing?
- Test Environment
- Test Methodology
- What we learned
 - Service configuration tips
 - Server Framework observations
 - Recommendations for VMWare

What Motivates the Testing?

Regression testing during development

- Performance
 - For various service types, data types and locations
 - Framework pieces SOM/SOC/SOCMon/WS handlers
- Service quality under load
 - Memory leaks
 - Response degradation (e.g. drawing errors)
 - Concurrency issues (e.g. hung processes deadlocks).

Discovering optimal server architectures

- Scalability
- Redundancy/Fault tolerance

Test Environment

- Hardware
 - PowerEdge M100E Blade Enclosure
 - 16 PowerEdge M600 blades
 - 2, quad-core, Intel(R) E5420 Xeon(R), 2.50GHz CPUs
 - 2x150GB 10K RPM, 3GBps Serial Attached SCSI in RAID 0
 - 8 GB RAM
 - 2x 1GBps NIC cards
 - MD3000i iSCSI SAN Device
 - 4x400GB, 10K RPM, 3GBps
 - RAID 5
 - PowerConnect 20 GbE Port Managed Switch (Separate Subnet)
- Software
 - Visual Studio 2008 Team Test (controller and 4 agents)
 - SQL Server 2008 + Reporting Services

Test Methodology (overview)

What we measure

Machine Performance Metrics

- CPU (% utilization)
 Average time per transaction
- Memory (available, per process)
 Throughput (transactions/hour)
- Disk I/O (% idle time, bytes/sec)
- Network (up/down, bytes/sec)

Types of tests

- Stress (step-load)
- Durability (constant-load)
- User-workflow (real-world)

More Information:

ArcGIS Server Performance and Scalability - Testing Methodologies (W-10:15 AM, Th-3:15 PM, RM 31C)

Service Metrics

Test Methodology: Stress Tests

Purpose:

- Find maximum throughput with acceptable transaction time
- Determine ratio of optimal service instances per core (sizing)
- Procedure:
 - Step load test (fixed increments of clients/service instances)
 - Run each step for 5 minutes and record average throughput

Test Methodology: Durability Tests

Purpose:

- Performance regression testing
- Service quality (memory leaks, functional errors)
- Determine long term stability (deadlocks)
- Procedure:
 - Constant Load at 60% of maximum found in "Stress" tests.
 - Run for short times for regression and long for quality/stability

Test Methodology: User Workflow Tests

- Purpose: Model and load test "real-world" user workflows
- Procedure:
 - Record the workflow (including think time between requests) of a user interacting with multiple resources and operations from multiple services.
 - Determine acceptable transaction times for each step in the workflow and for the entire workflow.
 - Play back workflows in step load tests until acceptable transaction times are breached.

Test Methodology: User Workflow Tests

<u>General</u> – Data Format

Low Complexity Map: Throughput vs. Data Source

<u>General</u> – Request Return Type (MIME vs. URL)

- MIME scales better than URL
- Disk/UNC shares bottleneck before network bandwidth

MIME vs. URL

<u>General</u> – Data storage location

- UNC/CIFS/SMB protocol has significant overhead
- Try to store data locally when possible.
- Penalty worsens with frequency of I/O

What We Learned: Service Configuration Tips <u>Map</u> – Setting Scale Dependency (reducing complexity)

<u>Map Caching</u> – Compact Cache Production (Local Staging)

Enables linear scalabilityMany times greater throughput

Compact Cache Generation

Map Caching - Consumption

Access to compact caches is slightly slower than exploded
Access to caches – SOAP < REST < Virtual Directory

Geocode, Network Analyst

Locator "runtime memory limit" has large impact

- Balance between available RAM and load/unload from disk

Service warm-up required for optimal performance

- Exercise service with most common routes before going live.
- ArcScripts Java tool (scriptID 16873) pre-opens files in FGDB

Image

- Raster Format
- Tiled, TIFF has greatest throughput
- Compression

Image Service: Variable Raster Formats

<u>Geoprocessing</u> – Local Jobs Directory

Greatest single performance factor9.3.1/10.0 allow simple deployment

What We Learned: Framework Observations

Web services handlers

LSASS optimization (.NET only)

- By default every service request authenticates
- Easy change to IIS application pool identity alleviates the issue.
 - Search for LSASS KB ID=32620 on resources.arcgis.com

Additional handlers guarantee SOC performance linearity

11 SOC Machines (88 cores)

What We Learned: Framework Observations

Software Network Load Balancers

Scalability dependent on proper web server thread management

- IIS worker process/CPU assignment ratio in web garden.

- Apache threads configuration

What We Learned: Framework Observations

SOM/SOC

SOM is difficult to bottleneck

- 165 map draw requests/sec per core at 60% CPU
- only add additional SOMs for redundancy
- Use "Capacity" sparingly
 - Use only when reserving memory for non-ArcGIS Server processes.
 - Starting/stopping SOCs is less efficient than memory swapping.
- 32 vs. 64 bit
 - ~5% improvement

What We Learned: Recommendations for VMWare

What We Learned: Recommendations for VMWare Penalty of virtualization (Physical vs. various VM configs)

Performance Troubleshooting

David Cordes

Agenda

Case of the ...

- The Missing CPU
- The Rollout

Case of the Missing CPU

18

Why aren't all my CPUs being used?

Case of the Missing CPU

The Business

- Drivers assigned work areas.
- Drivers work out of many centers.
- National.

The App

- Need to edit work areas & assign routes.
- Built custom web app.
- Hitting Server at national HQ.
- Staged rollout.

Minimize trips (SOE)

Basemap + Operational

Intermittent Problems

App Design

· Tough to analyze, predict Often under-reported Monitoring solutions Increase log level Logging Request and sub-request level

Recommended Sessions

ArcGIS Server Performance Sessions

Session	Level	Day	Time	Room
ArcGIS Server Performance and Scalability – Testing Methodologies	Adv	Tue	1:30	8
		Wed	10:15	31C
		Thu	3:15	31C
ArcGIS Server Performance and Scalability – Optimizing GIS Services	Int	Tue	3:15	8
Performance Tips for Geoprocessing Services	Beg	Wed	2:00	Spatial Analysis Demo Theater Exhibit Hall C
Best practices for designing effective map services	Int	Wed	3:15	14A

